142 lines
4.3 KiB
C++
142 lines
4.3 KiB
C++
/*
|
|
* Copyright (c) 2014, 2015, 2016, Charles River Analytics, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials provided
|
|
* with the distribution.
|
|
* 3. Neither the name of the copyright holder nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "robot_localization/ros_filter_types.h"
|
|
|
|
#include <gtest/gtest.h>
|
|
|
|
#include <limits>
|
|
#include <vector>
|
|
|
|
using RobotLocalization::Ukf;
|
|
using RobotLocalization::RosUkf;
|
|
using RobotLocalization::STATE_SIZE;
|
|
|
|
class RosUkfPassThrough : public RosUkf
|
|
{
|
|
public:
|
|
explicit RosUkfPassThrough(std::vector<double> &args) : RosUkf(ros::NodeHandle(), ros::NodeHandle("~"), args)
|
|
{
|
|
}
|
|
|
|
Ukf &getFilter()
|
|
{
|
|
return filter_;
|
|
}
|
|
};
|
|
|
|
TEST(UkfTest, Measurements)
|
|
{
|
|
std::vector<double> args;
|
|
args.push_back(0.001);
|
|
args.push_back(0);
|
|
args.push_back(2);
|
|
|
|
RosUkfPassThrough ukf(args);
|
|
|
|
Eigen::MatrixXd initialCovar(15, 15);
|
|
initialCovar.setIdentity();
|
|
initialCovar *= 0.5;
|
|
ukf.getFilter().setEstimateErrorCovariance(initialCovar);
|
|
|
|
EXPECT_EQ(ukf.getFilter().getEstimateErrorCovariance(), initialCovar);
|
|
|
|
Eigen::VectorXd measurement(STATE_SIZE);
|
|
for (size_t i = 0; i < STATE_SIZE; ++i)
|
|
{
|
|
measurement[i] = i * 0.01 * STATE_SIZE;
|
|
}
|
|
|
|
Eigen::MatrixXd measurementCovariance(STATE_SIZE, STATE_SIZE);
|
|
measurementCovariance.setIdentity();
|
|
for (size_t i = 0; i < STATE_SIZE; ++i)
|
|
{
|
|
measurementCovariance(i, i) = 1e-9;
|
|
}
|
|
|
|
std::vector<int> updateVector(STATE_SIZE, true);
|
|
|
|
// Ensure that measurements are being placed in the queue correctly
|
|
ros::Time time;
|
|
time.fromSec(1000);
|
|
ukf.enqueueMeasurement("odom0",
|
|
measurement,
|
|
measurementCovariance,
|
|
updateVector,
|
|
std::numeric_limits<double>::max(),
|
|
time);
|
|
|
|
ukf.integrateMeasurements(ros::Time(1001));
|
|
|
|
EXPECT_EQ(ukf.getFilter().getState(), measurement);
|
|
EXPECT_EQ(ukf.getFilter().getEstimateErrorCovariance(), measurementCovariance);
|
|
|
|
ukf.getFilter().setEstimateErrorCovariance(initialCovar);
|
|
|
|
// Now fuse another measurement and check the output.
|
|
// We know what the filter's state should be when
|
|
// this is complete, so we'll check the difference and
|
|
// make sure it's suitably small.
|
|
Eigen::VectorXd measurement2 = measurement;
|
|
|
|
measurement2 *= 2.0;
|
|
|
|
for (size_t i = 0; i < STATE_SIZE; ++i)
|
|
{
|
|
measurementCovariance(i, i) = 1e-9;
|
|
}
|
|
|
|
time.fromSec(1002);
|
|
ukf.enqueueMeasurement("odom0",
|
|
measurement2,
|
|
measurementCovariance,
|
|
updateVector,
|
|
std::numeric_limits<double>::max(),
|
|
time);
|
|
|
|
ukf.integrateMeasurements(ros::Time(1003));
|
|
|
|
measurement = measurement2.eval() - ukf.getFilter().getState();
|
|
for (size_t i = 0; i < STATE_SIZE; ++i)
|
|
{
|
|
EXPECT_LT(::fabs(measurement[i]), 0.001);
|
|
}
|
|
}
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
ros::init(argc, argv, "ukf");
|
|
|
|
testing::InitGoogleTest(&argc, argv);
|
|
return RUN_ALL_TESTS();
|
|
}
|