AMR_T800/Localizations/Packages/robot_localization/test/test_ekf.cpp

136 lines
4.1 KiB
C++

/*
* Copyright (c) 2014, 2015, 2016, Charles River Analytics, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "robot_localization/ros_filter_types.h"
#include <gtest/gtest.h>
#include <limits>
#include <vector>
using RobotLocalization::Ekf;
using RobotLocalization::RosEkf;
using RobotLocalization::STATE_SIZE;
class RosEkfPassThrough : public RosEkf
{
public:
RosEkfPassThrough() : RosEkf(ros::NodeHandle(), ros::NodeHandle("~"))
{
}
Ekf &getFilter()
{
return filter_;
}
};
TEST(EkfTest, Measurements)
{
RosEkfPassThrough ekf;
Eigen::MatrixXd initialCovar(15, 15);
initialCovar.setIdentity();
initialCovar *= 0.5;
ekf.getFilter().setEstimateErrorCovariance(initialCovar);
Eigen::VectorXd measurement(STATE_SIZE);
measurement.setIdentity();
for (size_t i = 0; i < STATE_SIZE; ++i)
{
measurement[i] = i * 0.01 * STATE_SIZE;
}
Eigen::MatrixXd measurementCovariance(STATE_SIZE, STATE_SIZE);
measurementCovariance.setIdentity();
for (size_t i = 0; i < STATE_SIZE; ++i)
{
measurementCovariance(i, i) = 1e-9;
}
std::vector<int> updateVector(STATE_SIZE, true);
// Ensure that measurements are being placed in the queue correctly
ros::Time time;
time.fromSec(1000);
ekf.enqueueMeasurement("odom0",
measurement,
measurementCovariance,
updateVector,
std::numeric_limits<double>::max(),
time);
ekf.integrateMeasurements(ros::Time(1001));
EXPECT_EQ(ekf.getFilter().getState(), measurement);
EXPECT_EQ(ekf.getFilter().getEstimateErrorCovariance(), measurementCovariance);
ekf.getFilter().setEstimateErrorCovariance(initialCovar);
// Now fuse another measurement and check the output.
// We know what the filter's state should be when
// this is complete, so we'll check the difference and
// make sure it's suitably small.
Eigen::VectorXd measurement2 = measurement;
measurement2 *= 2.0;
for (size_t i = 0; i < STATE_SIZE; ++i)
{
measurementCovariance(i, i) = 1e-9;
}
time.fromSec(1002);
ekf.enqueueMeasurement("odom0",
measurement2,
measurementCovariance,
updateVector,
std::numeric_limits<double>::max(),
time);
ekf.integrateMeasurements(ros::Time(1003));
measurement = measurement2.eval() - ekf.getFilter().getState();
for (size_t i = 0; i < STATE_SIZE; ++i)
{
EXPECT_LT(::fabs(measurement[i]), 0.001);
}
}
int main(int argc, char **argv)
{
ros::init(argc, argv, "ekf");
testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}