/* * Copyright (c) 2014, 2015, 2016, Charles River Analytics, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include "robot_localization/ros_filter_types.h" #include #include #include using RobotLocalization::Ekf; using RobotLocalization::RosEkf; using RobotLocalization::STATE_SIZE; class RosEkfPassThrough : public RosEkf { public: RosEkfPassThrough() : RosEkf(ros::NodeHandle(), ros::NodeHandle("~")) { } Ekf &getFilter() { return filter_; } }; TEST(EkfTest, Measurements) { RosEkfPassThrough ekf; Eigen::MatrixXd initialCovar(15, 15); initialCovar.setIdentity(); initialCovar *= 0.5; ekf.getFilter().setEstimateErrorCovariance(initialCovar); Eigen::VectorXd measurement(STATE_SIZE); measurement.setIdentity(); for (size_t i = 0; i < STATE_SIZE; ++i) { measurement[i] = i * 0.01 * STATE_SIZE; } Eigen::MatrixXd measurementCovariance(STATE_SIZE, STATE_SIZE); measurementCovariance.setIdentity(); for (size_t i = 0; i < STATE_SIZE; ++i) { measurementCovariance(i, i) = 1e-9; } std::vector updateVector(STATE_SIZE, true); // Ensure that measurements are being placed in the queue correctly ros::Time time; time.fromSec(1000); ekf.enqueueMeasurement("odom0", measurement, measurementCovariance, updateVector, std::numeric_limits::max(), time); ekf.integrateMeasurements(ros::Time(1001)); EXPECT_EQ(ekf.getFilter().getState(), measurement); EXPECT_EQ(ekf.getFilter().getEstimateErrorCovariance(), measurementCovariance); ekf.getFilter().setEstimateErrorCovariance(initialCovar); // Now fuse another measurement and check the output. // We know what the filter's state should be when // this is complete, so we'll check the difference and // make sure it's suitably small. Eigen::VectorXd measurement2 = measurement; measurement2 *= 2.0; for (size_t i = 0; i < STATE_SIZE; ++i) { measurementCovariance(i, i) = 1e-9; } time.fromSec(1002); ekf.enqueueMeasurement("odom0", measurement2, measurementCovariance, updateVector, std::numeric_limits::max(), time); ekf.integrateMeasurements(ros::Time(1003)); measurement = measurement2.eval() - ekf.getFilter().getState(); for (size_t i = 0; i < STATE_SIZE; ++i) { EXPECT_LT(::fabs(measurement[i]), 0.001); } } int main(int argc, char **argv) { ros::init(argc, argv, "ekf"); testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); }