Merge pull request #28 from bsinno/feature/refactoring_for_linux
Polish ros2 branch
This commit is contained in:
commit
0edeab0703
|
|
@ -2,44 +2,76 @@ cmake_minimum_required(VERSION 3.5)
|
|||
|
||||
project(laser_geometry)
|
||||
|
||||
if(NOT CMAKE_CXX_STANDARD)
|
||||
set(CMAKE_CXX_STANDARD 14)
|
||||
endif()
|
||||
|
||||
find_package(ament_cmake REQUIRED)
|
||||
|
||||
find_package(angles REQUIRED)
|
||||
find_package(rclcpp REQUIRED)
|
||||
find_package(sensor_msgs REQUIRED)
|
||||
find_package(tf2 REQUIRED)
|
||||
find_package(Eigen3 REQUIRED)
|
||||
|
||||
set(Boost_USE_STATIC_LIBS ON)
|
||||
find_package(Boost REQUIRED)
|
||||
|
||||
# TODO(dhood): enable python support once ported to ROS 2
|
||||
# catkin_python_setup()
|
||||
|
||||
include_directories(include
|
||||
${angles_INCLUDE_DIRS}
|
||||
${rclcpp_INCLUDE_DIRS}
|
||||
${sensor_msgs_INCLUDE_DIRS}
|
||||
${tf2_INCLUDE_DIRS}
|
||||
${Boost_INCLUDE_DIRS}
|
||||
${EIGEN3_INCLUDE_DIR}
|
||||
)
|
||||
|
||||
add_library(laser_geometry src/laser_geometry.cpp)
|
||||
add_library(laser_geometry SHARED src/laser_geometry.cpp)
|
||||
target_link_libraries(laser_geometry
|
||||
${angles_LIBRARIES}
|
||||
${rclcpp_LIBRARIES}
|
||||
${sensor_msgs_LIBRARIES}
|
||||
${tf2_LIBRARIES}
|
||||
)
|
||||
|
||||
ament_export_include_directories(include)
|
||||
ament_export_libraries(laser_geometry)
|
||||
ament_package(CONFIG_EXTRAS laser_geometry-extras.cmake)
|
||||
# Causes the visibility macros to use dllexport rather than dllimport,
|
||||
# which is appropriate when building the dll but not consuming it.
|
||||
target_compile_definitions(laser_geometry PRIVATE "LASER_GEOMETRY_BUILDING_LIBRARY")
|
||||
|
||||
install(TARGETS laser_geometry
|
||||
ament_export_include_directories(include)
|
||||
ament_export_interfaces(laser_geometry)
|
||||
ament_export_libraries(laser_geometry)
|
||||
|
||||
install(
|
||||
TARGETS laser_geometry
|
||||
EXPORT laser_geometry
|
||||
ARCHIVE DESTINATION lib
|
||||
LIBRARY DESTINATION lib)
|
||||
install(DIRECTORY include/laser_geometry/
|
||||
DESTINATION include/${PROJECT_NAME}/
|
||||
FILES_MATCHING PATTERN "*.h")
|
||||
LIBRARY DESTINATION lib
|
||||
RUNTIME DESTINATION bin
|
||||
INCLUDES DESTINATION include
|
||||
)
|
||||
|
||||
install(
|
||||
DIRECTORY include/
|
||||
DESTINATION include
|
||||
)
|
||||
|
||||
if(BUILD_TESTING)
|
||||
# TODO(Martin-Idel-SI): replace this with ament_lint_auto() and/or add the copyright linter back
|
||||
find_package(ament_cmake_cppcheck REQUIRED)
|
||||
find_package(ament_cmake_cpplint REQUIRED)
|
||||
find_package(ament_cmake_lint_cmake REQUIRED)
|
||||
find_package(ament_cmake_uncrustify REQUIRED)
|
||||
ament_cppcheck()
|
||||
ament_cpplint()
|
||||
ament_lint_cmake()
|
||||
ament_uncrustify()
|
||||
|
||||
find_package(ament_cmake_gtest REQUIRED)
|
||||
find_package(ament_cmake_gmock REQUIRED)
|
||||
|
||||
ament_add_gtest(projection_test
|
||||
test/projection_test.cpp
|
||||
TIMEOUT 180)
|
||||
if(TARGET projection_test)
|
||||
target_link_libraries(projection_test laser_geometry)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
ament_package(CONFIG_EXTRAS laser_geometry-extras.cmake)
|
||||
|
|
|
|||
|
|
@ -1,317 +0,0 @@
|
|||
/*
|
||||
* Copyright (c) 2008, Willow Garage, Inc.
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are met:
|
||||
*
|
||||
* * Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
* * Neither the name of the Willow Garage, Inc. nor the names of its
|
||||
* contributors may be used to endorse or promote products derived from
|
||||
* this software without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||||
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#ifndef LASER_SCAN_UTILS_LASERSCAN_H
|
||||
#define LASER_SCAN_UTILS_LASERSCAN_H
|
||||
|
||||
#include <map>
|
||||
#include <iostream>
|
||||
#include <sstream>
|
||||
|
||||
#include "boost/numeric/ublas/matrix.hpp"
|
||||
#include "boost/thread/mutex.hpp"
|
||||
|
||||
#include <tf2/buffer_core.h>
|
||||
#include <sensor_msgs/msg/laser_scan.hpp>
|
||||
#include <sensor_msgs/msg/point_cloud.hpp>
|
||||
#include <sensor_msgs/msg/point_cloud2.hpp>
|
||||
|
||||
#ifndef ROS_DEBUG
|
||||
#define ROS_DEBUG(...)
|
||||
#endif // !ROS_DEBUG
|
||||
#ifndef ROS_ASSERT
|
||||
#define ROS_ASSERT(...)
|
||||
#endif // !ROS_ASSERT
|
||||
|
||||
#include <Eigen/Core>
|
||||
|
||||
namespace laser_geometry
|
||||
{
|
||||
// NOTE: invalid scan errors (will be present in LaserScan.msg in D-Turtle)
|
||||
const float LASER_SCAN_INVALID = -1.0;
|
||||
const float LASER_SCAN_MIN_RANGE = -2.0;
|
||||
const float LASER_SCAN_MAX_RANGE = -3.0;
|
||||
|
||||
namespace channel_option
|
||||
{
|
||||
//! Enumerated output channels options.
|
||||
/*!
|
||||
* An OR'd set of these options is passed as the final argument of
|
||||
* the projectLaser and transformLaserScanToPointCloud calls to
|
||||
* enable generation of the appropriate set of additional channels.
|
||||
*/
|
||||
enum ChannelOption
|
||||
{
|
||||
None = 0x00, //!< Enable no channels
|
||||
Intensity = 0x01, //!< Enable "intensities" channel
|
||||
Index = 0x02, //!< Enable "index" channel
|
||||
Distance = 0x04, //!< Enable "distances" channel
|
||||
Timestamp = 0x08, //!< Enable "stamps" channel
|
||||
Viewpoint = 0x10, //!< Enable "viewpoint" channel
|
||||
Default = (Intensity | Index) //!< Enable "intensities" and "index" channels
|
||||
};
|
||||
}
|
||||
|
||||
//! \brief A Class to Project Laser Scan
|
||||
/*!
|
||||
* This class will project laser scans into point clouds. It caches
|
||||
* unit vectors between runs (provided the angular resolution of
|
||||
* your scanner is not changing) to avoid excess computation.
|
||||
*
|
||||
* By default all range values less than the scanner min_range, and
|
||||
* greater than the scanner max_range are removed from the generated
|
||||
* point cloud, as these are assumed to be invalid.
|
||||
*
|
||||
* If it is important to preserve a mapping between the index of
|
||||
* range values and points in the cloud, the recommended approach is
|
||||
* to pre-filter your laser_scan message to meet the requiremnt that all
|
||||
* ranges are between min and max_range.
|
||||
*
|
||||
* The generated PointClouds have a number of channels which can be enabled
|
||||
* through the use of ChannelOption.
|
||||
* - channel_option::Intensity - Create a channel named "intensities" with the intensity of the return for each point
|
||||
* - channel_option::Index - Create a channel named "index" containing the index from the original array for each point
|
||||
* - channel_option::Distance - Create a channel named "distances" containing the distance from the laser to each point
|
||||
* - channel_option::Timestamp - Create a channel named "stamps" containing the specific timestamp at which each point was measured
|
||||
*/
|
||||
class LaserProjection
|
||||
{
|
||||
|
||||
public:
|
||||
|
||||
LaserProjection() : angle_min_(0), angle_max_(0) {}
|
||||
|
||||
//! Destructor to deallocate stored unit vectors
|
||||
~LaserProjection();
|
||||
|
||||
//! Project a sensor_msgs::msg::LaserScan into a sensor_msgs::msg::PointCloud
|
||||
/*!
|
||||
* Project a single laser scan from a linear array into a 3D
|
||||
* point cloud. The generated cloud will be in the same frame
|
||||
* as the original laser scan.
|
||||
*
|
||||
* \param scan_in The input laser scan
|
||||
* \param cloud_out The output point cloud
|
||||
* \param range_cutoff An additional range cutoff which can be
|
||||
* applied to discard everything above it.
|
||||
* Defaults to -1.0, which means the laser scan max range.
|
||||
* \param channel_option An OR'd set of channels to include.
|
||||
* Options include: channel_option::Default,
|
||||
* channel_option::Intensity, channel_option::Index,
|
||||
* channel_option::Distance, channel_option::Timestamp.
|
||||
*/
|
||||
void projectLaser (const sensor_msgs::msg::LaserScan& scan_in,
|
||||
sensor_msgs::msg::PointCloud& cloud_out,
|
||||
double range_cutoff = -1.0,
|
||||
int channel_options = channel_option::Default)
|
||||
{
|
||||
return projectLaser_ (scan_in, cloud_out, range_cutoff, false, channel_options);
|
||||
}
|
||||
|
||||
//! Project a sensor_msgs::msg::LaserScan into a sensor_msgs::msg::PointCloud2
|
||||
/*!
|
||||
* Project a single laser scan from a linear array into a 3D
|
||||
* point cloud. The generated cloud will be in the same frame
|
||||
* as the original laser scan.
|
||||
*
|
||||
* \param scan_in The input laser scan
|
||||
* \param cloud_out The output point cloud
|
||||
* \param range_cutoff An additional range cutoff which can be
|
||||
* applied to discard everything above it.
|
||||
* Defaults to -1.0, which means the laser scan max range.
|
||||
* \param channel_option An OR'd set of channels to include.
|
||||
* Options include: channel_option::Default,
|
||||
* channel_option::Intensity, channel_option::Index,
|
||||
* channel_option::Distance, channel_option::Timestamp.
|
||||
*/
|
||||
void projectLaser (const sensor_msgs::msg::LaserScan& scan_in,
|
||||
sensor_msgs::msg::PointCloud2 &cloud_out,
|
||||
double range_cutoff = -1.0,
|
||||
int channel_options = channel_option::Default)
|
||||
{
|
||||
projectLaser_(scan_in, cloud_out, range_cutoff, channel_options);
|
||||
}
|
||||
|
||||
//! Transform a sensor_msgs::msg::LaserScan into a sensor_msgs::msg::PointCloud in target frame
|
||||
/*!
|
||||
* Transform a single laser scan from a linear array into a 3D
|
||||
* point cloud, accounting for movement of the laser over the
|
||||
* course of the scan. In order for this transform to be
|
||||
* meaningful at a single point in time, the target_frame must
|
||||
* be a fixed reference frame. See the tf documentation for
|
||||
* more information on fixed frames.
|
||||
*
|
||||
* \param target_frame The frame of the resulting point cloud
|
||||
* \param scan_in The input laser scan
|
||||
* \param cloud_out The output point cloud
|
||||
* \param tf a tf::Transformer object to use to perform the
|
||||
* transform
|
||||
* \param range_cutoff An additional range cutoff which can be
|
||||
* applied to discard everything above it.
|
||||
* \param channel_option An OR'd set of channels to include.
|
||||
* Options include: channel_option::Default,
|
||||
* channel_option::Intensity, channel_option::Index,
|
||||
* channel_option::Distance, channel_option::Timestamp.
|
||||
*/
|
||||
void transformLaserScanToPointCloud (const std::string& target_frame,
|
||||
const sensor_msgs::msg::LaserScan& scan_in,
|
||||
sensor_msgs::msg::PointCloud& cloud_out,
|
||||
tf2::BufferCore &tf,
|
||||
double range_cutoff,
|
||||
int channel_options = channel_option::Default)
|
||||
{
|
||||
return transformLaserScanToPointCloud_ (target_frame, cloud_out, scan_in, tf, range_cutoff, channel_options);
|
||||
}
|
||||
|
||||
//! Transform a sensor_msgs::msg::LaserScan into a sensor_msgs::msg::PointCloud in target frame
|
||||
/*!
|
||||
* Transform a single laser scan from a linear array into a 3D
|
||||
* point cloud, accounting for movement of the laser over the
|
||||
* course of the scan. In order for this transform to be
|
||||
* meaningful at a single point in time, the target_frame must
|
||||
* be a fixed reference frame. See the tf documentation for
|
||||
* more information on fixed frames.
|
||||
*
|
||||
* \param target_frame The frame of the resulting point cloud
|
||||
* \param scan_in The input laser scan
|
||||
* \param cloud_out The output point cloud
|
||||
* \param tf a tf::Transformer object to use to perform the
|
||||
* transform
|
||||
* \param channel_option An OR'd set of channels to include.
|
||||
* Options include: channel_option::Default,
|
||||
* channel_option::Intensity, channel_option::Index,
|
||||
* channel_option::Distance, channel_option::Timestamp.
|
||||
*/
|
||||
void transformLaserScanToPointCloud (const std::string& target_frame,
|
||||
const sensor_msgs::msg::LaserScan& scan_in,
|
||||
sensor_msgs::msg::PointCloud& cloud_out,
|
||||
tf2::BufferCore &tf,
|
||||
int channel_options = channel_option::Default)
|
||||
{
|
||||
return transformLaserScanToPointCloud_ (target_frame, cloud_out, scan_in, tf, -1.0, channel_options);
|
||||
}
|
||||
|
||||
//! Transform a sensor_msgs::msg::LaserScan into a sensor_msgs::msg::PointCloud2 in target frame
|
||||
/*!
|
||||
* Transform a single laser scan from a linear array into a 3D
|
||||
* point cloud, accounting for movement of the laser over the
|
||||
* course of the scan. In order for this transform to be
|
||||
* meaningful at a single point in time, the target_frame must
|
||||
* be a fixed reference frame. See the tf documentation for
|
||||
* more information on fixed frames.
|
||||
*
|
||||
* \param target_frame The frame of the resulting point cloud
|
||||
* \param scan_in The input laser scan
|
||||
* \param cloud_out The output point cloud
|
||||
* \param tf a tf2::BufferCore object to use to perform the
|
||||
* transform
|
||||
* \param range_cutoff An additional range cutoff which can be
|
||||
* applied to discard everything above it.
|
||||
* Defaults to -1.0, which means the laser scan max range.
|
||||
* \param channel_option An OR'd set of channels to include.
|
||||
* Options include: channel_option::Default,
|
||||
* channel_option::Intensity, channel_option::Index,
|
||||
* channel_option::Distance, channel_option::Timestamp.
|
||||
*/
|
||||
void transformLaserScanToPointCloud(const std::string &target_frame,
|
||||
const sensor_msgs::msg::LaserScan &scan_in,
|
||||
sensor_msgs::msg::PointCloud2 &cloud_out,
|
||||
tf2::BufferCore &tf,
|
||||
double range_cutoff = -1.0,
|
||||
int channel_options = channel_option::Default)
|
||||
{
|
||||
transformLaserScanToPointCloud_(target_frame, scan_in, cloud_out, tf, range_cutoff, channel_options);
|
||||
}
|
||||
|
||||
protected:
|
||||
|
||||
//! Internal protected representation of getUnitVectors
|
||||
/*!
|
||||
* This function should not be used by external users, however,
|
||||
* it is left protected so that test code can evaluate it
|
||||
* appropriately.
|
||||
*/
|
||||
const boost::numeric::ublas::matrix<double>& getUnitVectors_(double angle_min,
|
||||
double angle_max,
|
||||
double angle_increment,
|
||||
unsigned int length);
|
||||
|
||||
private:
|
||||
|
||||
//! Internal hidden representation of projectLaser
|
||||
void projectLaser_ (const sensor_msgs::msg::LaserScan& scan_in,
|
||||
sensor_msgs::msg::PointCloud& cloud_out,
|
||||
double range_cutoff,
|
||||
bool preservative,
|
||||
int channel_options);
|
||||
|
||||
//! Internal hidden representation of projectLaser
|
||||
void projectLaser_ (const sensor_msgs::msg::LaserScan& scan_in,
|
||||
sensor_msgs::msg::PointCloud2 &cloud_out,
|
||||
double range_cutoff,
|
||||
int channel_options);
|
||||
|
||||
//! Internal hidden representation of transformLaserScanToPointCloud
|
||||
void transformLaserScanToPointCloud_ (const std::string& target_frame,
|
||||
sensor_msgs::msg::PointCloud& cloud_out,
|
||||
const sensor_msgs::msg::LaserScan& scan_in,
|
||||
tf2::BufferCore &tf,
|
||||
double range_cutoff,
|
||||
int channel_options);
|
||||
|
||||
//! Internal hidden representation of transformLaserScanToPointCloud2
|
||||
void transformLaserScanToPointCloud_ (const std::string &target_frame,
|
||||
const sensor_msgs::msg::LaserScan &scan_in,
|
||||
sensor_msgs::msg::PointCloud2 &cloud_out,
|
||||
tf2::BufferCore &tf,
|
||||
double range_cutoff,
|
||||
int channel_options);
|
||||
|
||||
//! Function used by the several forms of transformLaserScanToPointCloud_
|
||||
void transformLaserScanToPointCloud_ (const std::string &target_frame,
|
||||
const sensor_msgs::msg::LaserScan &scan_in,
|
||||
sensor_msgs::msg::PointCloud2 &cloud_out,
|
||||
tf2::Quaternion quat_start,
|
||||
tf2::Vector3 origin_start,
|
||||
tf2::Quaternion quat_end,
|
||||
tf2::Vector3 origin_end,
|
||||
double range_cutoff,
|
||||
int channel_options);
|
||||
|
||||
//! Internal map of pointers to stored values
|
||||
std::map<std::string,boost::numeric::ublas::matrix<double>* > unit_vector_map_;
|
||||
float angle_min_;
|
||||
float angle_max_;
|
||||
Eigen::ArrayXXd co_sine_map_;
|
||||
boost::mutex guv_mutex_;
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif //LASER_SCAN_UTILS_LASERSCAN_H
|
||||
203
include/laser_geometry/laser_geometry.hpp
Normal file
203
include/laser_geometry/laser_geometry.hpp
Normal file
|
|
@ -0,0 +1,203 @@
|
|||
/*
|
||||
* Copyright (c) 2008, Willow Garage, Inc.
|
||||
* Copyright (c) 2018, Bosch Software Innovations GmbH.
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are met:
|
||||
*
|
||||
* * Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
* * Neither the name of the Willow Garage, Inc. nor the names of its
|
||||
* contributors may be used to endorse or promote products derived from
|
||||
* this software without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||||
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#ifndef LASER_GEOMETRY__LASER_GEOMETRY_HPP_
|
||||
#define LASER_GEOMETRY__LASER_GEOMETRY_HPP_
|
||||
|
||||
#include <map>
|
||||
#include <iostream>
|
||||
#include <sstream>
|
||||
#include <string>
|
||||
|
||||
#include <Eigen/Core> // NOLINT (cpplint cannot handle include order here)
|
||||
|
||||
#include "tf2/buffer_core.h"
|
||||
#include "sensor_msgs/msg/laser_scan.hpp"
|
||||
#include "sensor_msgs/msg/point_cloud2.hpp"
|
||||
#include "laser_geometry/visibility_control.hpp"
|
||||
|
||||
namespace laser_geometry
|
||||
{
|
||||
// NOTE: invalid scan errors (will be present in LaserScan.msg in D-Turtle)
|
||||
const float LASER_SCAN_INVALID = -1.0;
|
||||
const float LASER_SCAN_MIN_RANGE = -2.0;
|
||||
const float LASER_SCAN_MAX_RANGE = -3.0;
|
||||
|
||||
namespace channel_option
|
||||
{
|
||||
// Enumerated output channels options.
|
||||
/*!
|
||||
* An OR'd set of these options is passed as the final argument of
|
||||
* the projectLaser and transformLaserScanToPointCloud calls to
|
||||
* enable generation of the appropriate set of additional channels.
|
||||
*/
|
||||
enum ChannelOption
|
||||
{
|
||||
None = 0x00, //!< Enable no channels
|
||||
Intensity = 0x01, //!< Enable "intensities" channel
|
||||
Index = 0x02, //!< Enable "index" channel
|
||||
Distance = 0x04, //!< Enable "distances" channel
|
||||
Timestamp = 0x08, //!< Enable "stamps" channel
|
||||
Viewpoint = 0x10, //!< Enable "viewpoint" channel
|
||||
Default = (Intensity | Index) //!< Enable "intensities" and "index" channels
|
||||
};
|
||||
} // namespace channel_option
|
||||
|
||||
//! \brief A Class to Project Laser Scan
|
||||
/*!
|
||||
* This class will project laser scans into point clouds. It caches
|
||||
* unit vectors between runs (provided the angular resolution of
|
||||
* your scanner is not changing) to avoid excess computation.
|
||||
*
|
||||
* By default all range values less than the scanner min_range, and
|
||||
* greater than the scanner max_range are removed from the generated
|
||||
* point cloud, as these are assumed to be invalid.
|
||||
*
|
||||
* If it is important to preserve a mapping between the index of
|
||||
* range values and points in the cloud, the recommended approach is
|
||||
* to pre-filter your laser_scan message to meet the requiremnt that all
|
||||
* ranges are between min and max_range.
|
||||
*
|
||||
* The generated PointClouds have a number of channels which can be enabled
|
||||
* through the use of ChannelOption.
|
||||
* - channel_option::Intensity - Create a channel named "intensities" with the intensity of the return for each point
|
||||
* - channel_option::Index - Create a channel named "index" containing the index from the original array for each point
|
||||
* - channel_option::Distance - Create a channel named "distances" containing the distance from the laser to each point
|
||||
* - channel_option::Timestamp - Create a channel named "stamps" containing the specific timestamp at which each point was measured
|
||||
*/
|
||||
|
||||
// TODO(Martin-Idel-SI): the support for PointCloud1 has been removed for now.
|
||||
// Refer to the GitHub issue #29: https://github.com/ros-perception/laser_geometry/issues/29
|
||||
|
||||
class LaserProjection
|
||||
{
|
||||
public:
|
||||
LaserProjection()
|
||||
: angle_min_(0), angle_max_(0) {}
|
||||
|
||||
// Project a sensor_msgs::msg::LaserScan into a sensor_msgs::msg::PointCloud2
|
||||
/*!
|
||||
* Project a single laser scan from a linear array into a 3D
|
||||
* point cloud. The generated cloud will be in the same frame
|
||||
* as the original laser scan.
|
||||
*
|
||||
* \param scan_in The input laser scan
|
||||
* \param cloud_out The output point cloud
|
||||
* \param range_cutoff An additional range cutoff which can be
|
||||
* applied to discard everything above it.
|
||||
* Defaults to -1.0, which means the laser scan max range.
|
||||
* \param channel_option An OR'd set of channels to include.
|
||||
* Options include: channel_option::Default,
|
||||
* channel_option::Intensity, channel_option::Index,
|
||||
* channel_option::Distance, channel_option::Timestamp.
|
||||
*/
|
||||
LASER_GEOMETRY_PUBLIC
|
||||
void projectLaser(
|
||||
const sensor_msgs::msg::LaserScan & scan_in,
|
||||
sensor_msgs::msg::PointCloud2 & cloud_out,
|
||||
double range_cutoff = -1.0,
|
||||
int channel_options = channel_option::Default)
|
||||
{
|
||||
projectLaser_(scan_in, cloud_out, range_cutoff, channel_options);
|
||||
}
|
||||
|
||||
// Transform a sensor_msgs::msg::LaserScan into a sensor_msgs::msg::PointCloud2 in target frame
|
||||
/*!
|
||||
* Transform a single laser scan from a linear array into a 3D
|
||||
* point cloud, accounting for movement of the laser over the
|
||||
* course of the scan. In order for this transform to be
|
||||
* meaningful at a single point in time, the target_frame must
|
||||
* be a fixed reference frame. See the tf documentation for
|
||||
* more information on fixed frames.
|
||||
*
|
||||
* \param target_frame The frame of the resulting point cloud
|
||||
* \param scan_in The input laser scan
|
||||
* \param cloud_out The output point cloud
|
||||
* \param tf a tf2::BufferCore object to use to perform the
|
||||
* transform
|
||||
* \param range_cutoff An additional range cutoff which can be
|
||||
* applied to discard everything above it.
|
||||
* Defaults to -1.0, which means the laser scan max range.
|
||||
* \param channel_option An OR'd set of channels to include.
|
||||
* Options include: channel_option::Default,
|
||||
* channel_option::Intensity, channel_option::Index,
|
||||
* channel_option::Distance, channel_option::Timestamp.
|
||||
*/
|
||||
LASER_GEOMETRY_PUBLIC
|
||||
void transformLaserScanToPointCloud(
|
||||
const std::string & target_frame,
|
||||
const sensor_msgs::msg::LaserScan & scan_in,
|
||||
sensor_msgs::msg::PointCloud2 & cloud_out,
|
||||
tf2::BufferCore & tf,
|
||||
double range_cutoff = -1.0,
|
||||
int channel_options = channel_option::Default)
|
||||
{
|
||||
transformLaserScanToPointCloud_(target_frame, scan_in, cloud_out, tf, range_cutoff,
|
||||
channel_options);
|
||||
}
|
||||
|
||||
private:
|
||||
// Internal hidden representation of projectLaser
|
||||
void projectLaser_(
|
||||
const sensor_msgs::msg::LaserScan & scan_in,
|
||||
sensor_msgs::msg::PointCloud2 & cloud_out,
|
||||
double range_cutoff,
|
||||
int channel_options);
|
||||
|
||||
// Internal hidden representation of transformLaserScanToPointCloud2
|
||||
void transformLaserScanToPointCloud_(
|
||||
const std::string & target_frame,
|
||||
const sensor_msgs::msg::LaserScan & scan_in,
|
||||
sensor_msgs::msg::PointCloud2 & cloud_out,
|
||||
tf2::BufferCore & tf,
|
||||
double range_cutoff,
|
||||
int channel_options);
|
||||
|
||||
// Function used by the several forms of transformLaserScanToPointCloud_
|
||||
void transformLaserScanToPointCloud_(
|
||||
const std::string & target_frame,
|
||||
const sensor_msgs::msg::LaserScan & scan_in,
|
||||
sensor_msgs::msg::PointCloud2 & cloud_out,
|
||||
tf2::Quaternion quat_start,
|
||||
tf2::Vector3 origin_start,
|
||||
tf2::Quaternion quat_end,
|
||||
tf2::Vector3 origin_end,
|
||||
double range_cutoff,
|
||||
int channel_options);
|
||||
|
||||
// Internal map of pointers to stored values
|
||||
float angle_min_;
|
||||
float angle_max_;
|
||||
Eigen::ArrayXXd co_sine_map_;
|
||||
};
|
||||
|
||||
} // namespace laser_geometry
|
||||
|
||||
#endif // LASER_GEOMETRY__LASER_GEOMETRY_HPP_
|
||||
|
|
@ -20,13 +20,11 @@
|
|||
|
||||
<buildtool_depend>ament_cmake</buildtool_depend>
|
||||
|
||||
<build_depend>angles</build_depend>
|
||||
<build_depend>Eigen3</build_depend>
|
||||
<build_depend>rclcpp</build_depend>
|
||||
<build_depend>sensor_msgs</build_depend>
|
||||
<build_depend>tf2</build_depend>
|
||||
|
||||
<exec_depend>angles</exec_depend>
|
||||
<exec_depend>Eigen3</exec_depend>
|
||||
<exec_depend>rclcpp</exec_depend>
|
||||
<exec_depend>sensor_msgs</exec_depend>
|
||||
|
|
@ -34,6 +32,13 @@
|
|||
|
||||
<exec_depend>ament_cmake</exec_depend>
|
||||
|
||||
<test_depend>ament_cmake_cppcheck</test_depend>
|
||||
<test_depend>ament_cmake_cpplint</test_depend>
|
||||
<test_depend>ament_cmake_gtest</test_depend>
|
||||
<test_depend>ament_cmake_gmock</test_depend>
|
||||
<test_depend>ament_cmake_lint_cmake</test_depend>
|
||||
<test_depend>ament_cmake_uncrustify</test_depend>
|
||||
|
||||
<export>
|
||||
<build_type>ament_cmake</build_type>
|
||||
</export>
|
||||
|
|
|
|||
|
|
@ -1,5 +1,6 @@
|
|||
/*
|
||||
* Copyright (c) 2008, Willow Garage, Inc.
|
||||
* Copyright (c) 2018, Bosch Software Innovations GmbH.
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
|
|
@ -27,172 +28,25 @@
|
|||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include "laser_geometry/laser_geometry.h"
|
||||
#include "laser_geometry/laser_geometry.hpp"
|
||||
|
||||
#include <algorithm>
|
||||
#include <string>
|
||||
|
||||
#include "rclcpp/time.hpp"
|
||||
|
||||
#define TIME rclcpp::Time
|
||||
|
||||
#define POINT_FIELD sensor_msgs::msg::PointField
|
||||
|
||||
// TODO: fix definitions
|
||||
typedef double tfScalar;
|
||||
|
||||
#include <tf2/LinearMath/Transform.h>
|
||||
#include "tf2/LinearMath/Transform.h"
|
||||
|
||||
namespace laser_geometry
|
||||
{
|
||||
|
||||
void
|
||||
LaserProjection::projectLaser_ (const sensor_msgs::msg::LaserScan& scan_in, sensor_msgs::msg::PointCloud & cloud_out, double range_cutoff,
|
||||
bool preservative, int mask)
|
||||
{
|
||||
boost::numeric::ublas::matrix<double> ranges(2, scan_in.ranges.size());
|
||||
|
||||
// Fill the ranges matrix
|
||||
for (unsigned int index = 0; index < scan_in.ranges.size(); index++)
|
||||
{
|
||||
ranges(0,index) = (double) scan_in.ranges[index];
|
||||
ranges(1,index) = (double) scan_in.ranges[index];
|
||||
}
|
||||
|
||||
//Do the projection
|
||||
// NEWMAT::Matrix output = NEWMAT::SP(ranges, getUnitVectors(scan_in.angle_min, scan_in.angle_max, scan_in.angle_increment));
|
||||
boost::numeric::ublas::matrix<double> output = element_prod(ranges, getUnitVectors_(scan_in.angle_min, scan_in.angle_max, scan_in.angle_increment, scan_in.ranges.size()));
|
||||
|
||||
//Stuff the output cloud
|
||||
cloud_out.header = scan_in.header;
|
||||
cloud_out.points.resize (scan_in.ranges.size());
|
||||
|
||||
// Define 4 indices in the channel array for each possible value type
|
||||
int idx_intensity = -1, idx_index = -1, idx_distance = -1, idx_timestamp = -1;
|
||||
|
||||
cloud_out.channels.resize(0);
|
||||
|
||||
// Check if the intensity bit is set
|
||||
if ((mask & channel_option::Intensity) && scan_in.intensities.size() > 0)
|
||||
{
|
||||
int chan_size = cloud_out.channels.size();
|
||||
cloud_out.channels.resize (chan_size + 1);
|
||||
cloud_out.channels[0].name = "intensities";
|
||||
cloud_out.channels[0].values.resize (scan_in.intensities.size());
|
||||
idx_intensity = 0;
|
||||
}
|
||||
|
||||
// Check if the index bit is set
|
||||
if (mask & channel_option::Index)
|
||||
{
|
||||
int chan_size = cloud_out.channels.size();
|
||||
cloud_out.channels.resize (chan_size +1);
|
||||
cloud_out.channels[chan_size].name = "index";
|
||||
cloud_out.channels[chan_size].values.resize (scan_in.ranges.size());
|
||||
idx_index = chan_size;
|
||||
}
|
||||
|
||||
// Check if the distance bit is set
|
||||
if (mask & channel_option::Distance)
|
||||
{
|
||||
int chan_size = cloud_out.channels.size();
|
||||
cloud_out.channels.resize (chan_size + 1);
|
||||
cloud_out.channels[chan_size].name = "distances";
|
||||
cloud_out.channels[chan_size].values.resize (scan_in.ranges.size());
|
||||
idx_distance = chan_size;
|
||||
}
|
||||
|
||||
if (mask & channel_option::Timestamp)
|
||||
{
|
||||
int chan_size = cloud_out.channels.size();
|
||||
cloud_out.channels.resize (chan_size + 1);
|
||||
cloud_out.channels[chan_size].name = "stamps";
|
||||
cloud_out.channels[chan_size].values.resize (scan_in.ranges.size());
|
||||
idx_timestamp = chan_size;
|
||||
}
|
||||
|
||||
if (range_cutoff < 0)
|
||||
range_cutoff = scan_in.range_max;
|
||||
|
||||
unsigned int count = 0;
|
||||
for (unsigned int index = 0; index< scan_in.ranges.size(); index++)
|
||||
{
|
||||
const float range = ranges(0, index);
|
||||
if (preservative || ((range < range_cutoff) && (range >= scan_in.range_min))) //if valid or preservative
|
||||
{
|
||||
cloud_out.points[count].x = output(0,index);
|
||||
cloud_out.points[count].y = output(1,index);
|
||||
cloud_out.points[count].z = 0.0;
|
||||
|
||||
//double x = cloud_out.points[count].x;
|
||||
//double y = cloud_out.points[count].y;
|
||||
//if(x*x + y*y < scan_in.range_min * scan_in.range_min){
|
||||
// ROS_INFO("(%.2f, %.2f)", cloud_out.points[count].x, cloud_out.points[count].y);
|
||||
//}
|
||||
|
||||
// Save the original point index
|
||||
if (idx_index != -1)
|
||||
cloud_out.channels[idx_index].values[count] = index;
|
||||
|
||||
// Save the original point distance
|
||||
if (idx_distance != -1)
|
||||
cloud_out.channels[idx_distance].values[count] = range;
|
||||
|
||||
// Save intensities channel
|
||||
if (scan_in.intensities.size() >= index)
|
||||
{ /// \todo optimize and catch length difference better
|
||||
if (idx_intensity != -1)
|
||||
cloud_out.channels[idx_intensity].values[count] = scan_in.intensities[index];
|
||||
}
|
||||
|
||||
// Save timestamps to seperate channel if asked for
|
||||
if( idx_timestamp != -1)
|
||||
cloud_out.channels[idx_timestamp].values[count] = (float)index*scan_in.time_increment;
|
||||
|
||||
count++;
|
||||
}
|
||||
}
|
||||
|
||||
//downsize if necessary
|
||||
cloud_out.points.resize (count);
|
||||
for (unsigned int d = 0; d < cloud_out.channels.size(); d++)
|
||||
cloud_out.channels[d].values.resize(count);
|
||||
};
|
||||
|
||||
const boost::numeric::ublas::matrix<double>& LaserProjection::getUnitVectors_(double angle_min, double angle_max, double angle_increment, unsigned int length)
|
||||
{
|
||||
boost::mutex::scoped_lock guv_lock(this->guv_mutex_);
|
||||
|
||||
//construct string for lookup in the map
|
||||
std::stringstream anglestring;
|
||||
anglestring <<angle_min<<","<<angle_max<<","<<angle_increment<<","<<length;
|
||||
std::map<std::string, boost::numeric::ublas::matrix<double>* >::iterator it;
|
||||
it = unit_vector_map_.find(anglestring.str());
|
||||
//check the map for presense
|
||||
if (it != unit_vector_map_.end())
|
||||
return *((*it).second); //if present return
|
||||
|
||||
boost::numeric::ublas::matrix<double> * tempPtr = new boost::numeric::ublas::matrix<double>(2,length);
|
||||
for (unsigned int index = 0;index < length; index++)
|
||||
{
|
||||
(*tempPtr)(0,index) = cos(angle_min + (double) index * angle_increment);
|
||||
(*tempPtr)(1,index) = sin(angle_min + (double) index * angle_increment);
|
||||
}
|
||||
//store
|
||||
unit_vector_map_[anglestring.str()] = tempPtr;
|
||||
//and return
|
||||
return *tempPtr;
|
||||
};
|
||||
|
||||
|
||||
LaserProjection::~LaserProjection()
|
||||
{
|
||||
std::map<std::string, boost::numeric::ublas::matrix<double>*>::iterator it;
|
||||
it = unit_vector_map_.begin();
|
||||
while (it != unit_vector_map_.end())
|
||||
{
|
||||
delete (*it).second;
|
||||
it++;
|
||||
}
|
||||
};
|
||||
|
||||
void LaserProjection::projectLaser_ (const sensor_msgs::msg::LaserScan& scan_in,
|
||||
void LaserProjection::projectLaser_(
|
||||
const sensor_msgs::msg::LaserScan & scan_in,
|
||||
sensor_msgs::msg::PointCloud2 & cloud_out,
|
||||
double range_cutoff,
|
||||
int channel_options)
|
||||
|
|
@ -202,24 +56,25 @@ const boost::numeric::ublas::matrix<double>& LaserProjection::getUnitVectors_(do
|
|||
Eigen::ArrayXXd output(n_pts, 2);
|
||||
|
||||
// Get the ranges into Eigen format
|
||||
for (size_t i = 0; i < n_pts; ++i)
|
||||
{
|
||||
ranges (i, 0) = (double) scan_in.ranges[i];
|
||||
ranges (i, 1) = (double) scan_in.ranges[i];
|
||||
for (size_t i = 0; i < n_pts; ++i) {
|
||||
ranges(i, 0) = static_cast<double>(scan_in.ranges[i]);
|
||||
ranges(i, 1) = static_cast<double>(scan_in.ranges[i]);
|
||||
}
|
||||
|
||||
// Check if our existing co_sine_map is valid
|
||||
if (co_sine_map_.rows () != (int)n_pts || angle_min_ != scan_in.angle_min || angle_max_ != scan_in.angle_max )
|
||||
if (co_sine_map_.rows() != static_cast<int>(n_pts) || angle_min_ != scan_in.angle_min ||
|
||||
angle_max_ != scan_in.angle_max)
|
||||
{
|
||||
ROS_DEBUG ("[projectLaser] No precomputed map given. Computing one.");
|
||||
// ROS_DEBUG("[projectLaser] No precomputed map given. Computing one.");
|
||||
co_sine_map_ = Eigen::ArrayXXd(n_pts, 2);
|
||||
angle_min_ = scan_in.angle_min;
|
||||
angle_max_ = scan_in.angle_max;
|
||||
// Spherical->Cartesian projection
|
||||
for (size_t i = 0; i < n_pts; ++i)
|
||||
{
|
||||
co_sine_map_ (i, 0) = cos (scan_in.angle_min + (double) i * scan_in.angle_increment);
|
||||
co_sine_map_ (i, 1) = sin (scan_in.angle_min + (double) i * scan_in.angle_increment);
|
||||
for (size_t i = 0; i < n_pts; ++i) {
|
||||
co_sine_map_(i, 0) =
|
||||
cos(scan_in.angle_min + static_cast<double>(i) * scan_in.angle_increment);
|
||||
co_sine_map_(i, 1) =
|
||||
sin(scan_in.angle_min + static_cast<double>(i) * scan_in.angle_increment);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -228,7 +83,7 @@ const boost::numeric::ublas::matrix<double>& LaserProjection::getUnitVectors_(do
|
|||
// Set the output cloud accordingly
|
||||
cloud_out.header = scan_in.header;
|
||||
cloud_out.height = 1;
|
||||
cloud_out.width = scan_in.ranges.size ();
|
||||
cloud_out.width = static_cast<uint32_t>(scan_in.ranges.size());
|
||||
cloud_out.fields.resize(3);
|
||||
cloud_out.fields[0].name = "x";
|
||||
cloud_out.fields[0].offset = 0;
|
||||
|
|
@ -244,61 +99,57 @@ const boost::numeric::ublas::matrix<double>& LaserProjection::getUnitVectors_(do
|
|||
cloud_out.fields[2].count = 1;
|
||||
|
||||
// Define 4 indices in the channel array for each possible value type
|
||||
int idx_intensity = -1, idx_index = -1, idx_distance = -1, idx_timestamp = -1, idx_vpx = -1, idx_vpy = -1, idx_vpz = -1;
|
||||
int idx_intensity = -1, idx_index = -1, idx_distance = -1, idx_timestamp = -1, idx_vpx = -1,
|
||||
idx_vpy = -1, idx_vpz = -1;
|
||||
|
||||
// now, we need to check what fields we need to store
|
||||
int offset = 12;
|
||||
if ((channel_options & channel_option::Intensity) && scan_in.intensities.size() > 0)
|
||||
{
|
||||
int field_size = cloud_out.fields.size();
|
||||
uint32_t offset = 12;
|
||||
if ((channel_options & channel_option::Intensity) && scan_in.intensities.size() > 0) {
|
||||
size_t field_size = cloud_out.fields.size();
|
||||
cloud_out.fields.resize(field_size + 1);
|
||||
cloud_out.fields[field_size].name = "intensity";
|
||||
cloud_out.fields[field_size].datatype = POINT_FIELD::FLOAT32;
|
||||
cloud_out.fields[field_size].offset = offset;
|
||||
cloud_out.fields[field_size].count = 1;
|
||||
offset += 4;
|
||||
idx_intensity = field_size;
|
||||
idx_intensity = static_cast<int>(field_size);
|
||||
}
|
||||
|
||||
if ((channel_options & channel_option::Index))
|
||||
{
|
||||
int field_size = cloud_out.fields.size();
|
||||
if ((channel_options & channel_option::Index)) {
|
||||
size_t field_size = cloud_out.fields.size();
|
||||
cloud_out.fields.resize(field_size + 1);
|
||||
cloud_out.fields[field_size].name = "index";
|
||||
cloud_out.fields[field_size].datatype = POINT_FIELD::INT32;
|
||||
cloud_out.fields[field_size].offset = offset;
|
||||
cloud_out.fields[field_size].count = 1;
|
||||
offset += 4;
|
||||
idx_index = field_size;
|
||||
idx_index = static_cast<int>(field_size);
|
||||
}
|
||||
|
||||
if ((channel_options & channel_option::Distance))
|
||||
{
|
||||
int field_size = cloud_out.fields.size();
|
||||
if ((channel_options & channel_option::Distance)) {
|
||||
size_t field_size = cloud_out.fields.size();
|
||||
cloud_out.fields.resize(field_size + 1);
|
||||
cloud_out.fields[field_size].name = "distances";
|
||||
cloud_out.fields[field_size].datatype = POINT_FIELD::FLOAT32;
|
||||
cloud_out.fields[field_size].offset = offset;
|
||||
cloud_out.fields[field_size].count = 1;
|
||||
offset += 4;
|
||||
idx_distance = field_size;
|
||||
idx_distance = static_cast<int>(field_size);
|
||||
}
|
||||
|
||||
if ((channel_options & channel_option::Timestamp))
|
||||
{
|
||||
int field_size = cloud_out.fields.size();
|
||||
if ((channel_options & channel_option::Timestamp)) {
|
||||
size_t field_size = cloud_out.fields.size();
|
||||
cloud_out.fields.resize(field_size + 1);
|
||||
cloud_out.fields[field_size].name = "stamps";
|
||||
cloud_out.fields[field_size].datatype = POINT_FIELD::FLOAT32;
|
||||
cloud_out.fields[field_size].offset = offset;
|
||||
cloud_out.fields[field_size].count = 1;
|
||||
offset += 4;
|
||||
idx_timestamp = field_size;
|
||||
idx_timestamp = static_cast<int>(field_size);
|
||||
}
|
||||
|
||||
if ((channel_options & channel_option::Viewpoint))
|
||||
{
|
||||
int field_size = cloud_out.fields.size();
|
||||
if ((channel_options & channel_option::Viewpoint)) {
|
||||
size_t field_size = cloud_out.fields.size();
|
||||
cloud_out.fields.resize(field_size + 3);
|
||||
|
||||
cloud_out.fields[field_size].name = "vp_x";
|
||||
|
|
@ -319,9 +170,9 @@ const boost::numeric::ublas::matrix<double>& LaserProjection::getUnitVectors_(do
|
|||
cloud_out.fields[field_size + 2].count = 1;
|
||||
offset += 4;
|
||||
|
||||
idx_vpx = field_size;
|
||||
idx_vpy = field_size + 1;
|
||||
idx_vpz = field_size + 2;
|
||||
idx_vpx = static_cast<int>(field_size);
|
||||
idx_vpy = static_cast<int>(field_size + 1);
|
||||
idx_vpz = static_cast<int>(field_size + 2);
|
||||
}
|
||||
|
||||
cloud_out.point_step = offset;
|
||||
|
|
@ -329,42 +180,44 @@ const boost::numeric::ublas::matrix<double>& LaserProjection::getUnitVectors_(do
|
|||
cloud_out.data.resize(cloud_out.row_step * cloud_out.height);
|
||||
cloud_out.is_dense = false;
|
||||
|
||||
if (range_cutoff < 0)
|
||||
if (range_cutoff < 0) {
|
||||
range_cutoff = scan_in.range_max;
|
||||
}
|
||||
|
||||
unsigned int count = 0;
|
||||
for (size_t i = 0; i < n_pts; ++i)
|
||||
{
|
||||
for (size_t i = 0; i < n_pts; ++i) {
|
||||
// check to see if we want to keep the point
|
||||
const float range = scan_in.ranges[i];
|
||||
if (range < range_cutoff && range >= scan_in.range_min)
|
||||
{
|
||||
float *pstep = (float*)&cloud_out.data[count * cloud_out.point_step];
|
||||
if (range < range_cutoff && range >= scan_in.range_min) {
|
||||
auto pstep = reinterpret_cast<float *>(&cloud_out.data[count * cloud_out.point_step]);
|
||||
|
||||
// Copy XYZ
|
||||
pstep[0] = output (i, 0);
|
||||
pstep[1] = output (i, 1);
|
||||
pstep[0] = static_cast<float>(output(i, 0));
|
||||
pstep[1] = static_cast<float>(output(i, 1));
|
||||
pstep[2] = 0;
|
||||
|
||||
// Copy intensity
|
||||
if(idx_intensity != -1)
|
||||
if (idx_intensity != -1) {
|
||||
pstep[idx_intensity] = scan_in.intensities[i];
|
||||
}
|
||||
|
||||
// Copy index
|
||||
if(idx_index != -1)
|
||||
((int*)(pstep))[idx_index] = i;
|
||||
if (idx_index != -1) {
|
||||
reinterpret_cast<int *>(pstep)[idx_index] = static_cast<int>(i);
|
||||
}
|
||||
|
||||
// Copy distance
|
||||
if(idx_distance != -1)
|
||||
if (idx_distance != -1) {
|
||||
pstep[idx_distance] = range;
|
||||
}
|
||||
|
||||
// Copy timestamp
|
||||
if(idx_timestamp != -1)
|
||||
if (idx_timestamp != -1) {
|
||||
pstep[idx_timestamp] = i * scan_in.time_increment;
|
||||
}
|
||||
|
||||
// Copy viewpoint (0, 0, 0)
|
||||
if(idx_vpx != -1 && idx_vpy != -1 && idx_vpz != -1)
|
||||
{
|
||||
if (idx_vpx != -1 && idx_vpy != -1 && idx_vpz != -1) {
|
||||
pstep[idx_vpx] = 0;
|
||||
pstep[idx_vpy] = 0;
|
||||
pstep[idx_vpz] = 0;
|
||||
|
|
@ -374,8 +227,8 @@ const boost::numeric::ublas::matrix<double>& LaserProjection::getUnitVectors_(do
|
|||
++count;
|
||||
}
|
||||
|
||||
/* TODO: Why was this done in this way, I don't get this at all, you end up with a ton of points with NaN values
|
||||
* why can't you just leave them out?
|
||||
/* TODO(anonymous): Why was this done in this way, I don't get this at all, you end up with a
|
||||
* ton of points with NaN values why can't you just leave them out?
|
||||
*
|
||||
// Invalid measurement?
|
||||
if (scan_in.ranges[i] >= range_cutoff || scan_in.ranges[i] <= scan_in.range_min)
|
||||
|
|
@ -412,7 +265,8 @@ const boost::numeric::ublas::matrix<double>& LaserProjection::getUnitVectors_(do
|
|||
cloud_out.data.resize(cloud_out.row_step * cloud_out.height);
|
||||
}
|
||||
|
||||
void LaserProjection::transformLaserScanToPointCloud_(const std::string &target_frame,
|
||||
void LaserProjection::transformLaserScanToPointCloud_(
|
||||
const std::string & target_frame,
|
||||
const sensor_msgs::msg::LaserScan & scan_in,
|
||||
sensor_msgs::msg::PointCloud2 & cloud_out,
|
||||
tf2::Quaternion quat_start,
|
||||
|
|
@ -424,8 +278,9 @@ const boost::numeric::ublas::matrix<double>& LaserProjection::getUnitVectors_(do
|
|||
{
|
||||
// check if the user has requested the index field
|
||||
bool requested_index = false;
|
||||
if ((channel_options & channel_option::Index))
|
||||
if ((channel_options & channel_option::Index)) {
|
||||
requested_index = true;
|
||||
}
|
||||
|
||||
// we'll enforce that we get index values for the laser scan so that we
|
||||
// ensure that we use the correct timestamps
|
||||
|
|
@ -443,45 +298,42 @@ const boost::numeric::ublas::matrix<double>& LaserProjection::getUnitVectors_(do
|
|||
// putting in a check at some point, but I'm just going to put in an
|
||||
// assert for now
|
||||
uint32_t index_offset = 0;
|
||||
for(unsigned int i = 0; i < cloud_out.fields.size(); ++i)
|
||||
{
|
||||
if(cloud_out.fields[i].name == "index")
|
||||
{
|
||||
for (unsigned int i = 0; i < cloud_out.fields.size(); ++i) {
|
||||
if (cloud_out.fields[i].name == "index") {
|
||||
index_offset = cloud_out.fields[i].offset;
|
||||
}
|
||||
|
||||
// we want to check if the cloud has a viewpoint associated with it
|
||||
// checking vp_x should be sufficient since vp_x, vp_y, and vp_z all
|
||||
// get put in together
|
||||
if(cloud_out.fields[i].name == "vp_x")
|
||||
{
|
||||
if (cloud_out.fields[i].name == "vp_x") {
|
||||
has_viewpoint = true;
|
||||
vp_x_offset = cloud_out.fields[i].offset;
|
||||
}
|
||||
}
|
||||
|
||||
ROS_ASSERT(index_offset > 0);
|
||||
assert(index_offset > 0);
|
||||
|
||||
cloud_out.header.frame_id = target_frame;
|
||||
|
||||
tf2::Transform cur_transform;
|
||||
|
||||
double ranges_norm = 1 / ((double) scan_in.ranges.size () - 1.0);
|
||||
double ranges_norm = 1 / (static_cast<double>(scan_in.ranges.size()) - 1.0);
|
||||
|
||||
// we want to loop through all the points in the cloud
|
||||
for(size_t i = 0; i < cloud_out.width; ++i)
|
||||
{
|
||||
for (size_t i = 0; i < cloud_out.width; ++i) {
|
||||
// Apply the transform to the current point
|
||||
float *pstep = (float*)&cloud_out.data[i * cloud_out.point_step + 0];
|
||||
float * pstep = reinterpret_cast<float *>(&cloud_out.data[i * cloud_out.point_step + 0]);
|
||||
|
||||
// find the index of the point
|
||||
uint32_t pt_index;
|
||||
memcpy(&pt_index, &cloud_out.data[i * cloud_out.point_step + index_offset], sizeof(uint32_t));
|
||||
|
||||
// Assume constant motion during the laser-scan, and use slerp to compute intermediate transforms
|
||||
// Assume constant motion during the laser-scan and use slerp to compute intermediate transforms
|
||||
tfScalar ratio = pt_index * ranges_norm;
|
||||
|
||||
//! \todo Make a function that performs both the slerp and linear interpolation needed to interpolate a Full Transform (Quaternion + Vector)
|
||||
// TODO(anon): Make a function that performs both the slerp and linear interpolation needed to
|
||||
// interpolate a Full Transform (Quaternion + Vector)
|
||||
// Interpolate translation
|
||||
tf2::Vector3 v(0, 0, 0);
|
||||
v.setInterpolate3(origin_start, origin_end, ratio);
|
||||
|
|
@ -494,27 +346,26 @@ const boost::numeric::ublas::matrix<double>& LaserProjection::getUnitVectors_(do
|
|||
tf2::Vector3 point_out = cur_transform * point_in;
|
||||
|
||||
// Copy transformed point into cloud
|
||||
pstep[0] = point_out.x ();
|
||||
pstep[1] = point_out.y ();
|
||||
pstep[2] = point_out.z ();
|
||||
pstep[0] = static_cast<float>(point_out.x());
|
||||
pstep[1] = static_cast<float>(point_out.y());
|
||||
pstep[2] = static_cast<float>(point_out.z());
|
||||
|
||||
// Convert the viewpoint as well
|
||||
if(has_viewpoint)
|
||||
{
|
||||
float *vpstep = (float*)&cloud_out.data[i * cloud_out.point_step + vp_x_offset];
|
||||
if (has_viewpoint) {
|
||||
auto vpstep =
|
||||
reinterpret_cast<float *>(&cloud_out.data[i * cloud_out.point_step + vp_x_offset]);
|
||||
point_in = tf2::Vector3(vpstep[0], vpstep[1], vpstep[2]);
|
||||
point_out = cur_transform * point_in;
|
||||
|
||||
// Copy transformed point into cloud
|
||||
vpstep[0] = point_out.x ();
|
||||
vpstep[1] = point_out.y ();
|
||||
vpstep[2] = point_out.z ();
|
||||
vpstep[0] = static_cast<float>(point_out.x());
|
||||
vpstep[1] = static_cast<float>(point_out.y());
|
||||
vpstep[2] = static_cast<float>(point_out.z());
|
||||
}
|
||||
}
|
||||
|
||||
// if the user didn't request the index field, then we need to copy the PointCloud and drop it
|
||||
if(!requested_index)
|
||||
{
|
||||
if (!requested_index) {
|
||||
sensor_msgs::msg::PointCloud2 cloud_without_index;
|
||||
|
||||
// copy basic meta data
|
||||
|
|
@ -528,16 +379,12 @@ const boost::numeric::ublas::matrix<double>& LaserProjection::getUnitVectors_(do
|
|||
cloud_without_index.fields.resize(cloud_out.fields.size());
|
||||
unsigned int field_count = 0;
|
||||
unsigned int offset_shift = 0;
|
||||
for(unsigned int i = 0; i < cloud_out.fields.size(); ++i)
|
||||
{
|
||||
if(cloud_out.fields[i].name != "index")
|
||||
{
|
||||
for (unsigned int i = 0; i < cloud_out.fields.size(); ++i) {
|
||||
if (cloud_out.fields[i].name != "index") {
|
||||
cloud_without_index.fields[field_count] = cloud_out.fields[i];
|
||||
cloud_without_index.fields[field_count].offset -= offset_shift;
|
||||
++field_count;
|
||||
}
|
||||
else
|
||||
{
|
||||
} else {
|
||||
// once we hit the index, we'll set the shift
|
||||
offset_shift = 4;
|
||||
}
|
||||
|
|
@ -554,9 +401,9 @@ const boost::numeric::ublas::matrix<double>& LaserProjection::getUnitVectors_(do
|
|||
uint32_t i = 0;
|
||||
uint32_t j = 0;
|
||||
// copy over the data from one cloud to the other
|
||||
while (i < cloud_out.data.size())
|
||||
{
|
||||
if((i % cloud_out.point_step) < index_offset || (i % cloud_out.point_step) >= (index_offset + 4))
|
||||
while (i < cloud_out.data.size()) {
|
||||
if ((i % cloud_out.point_step) < index_offset ||
|
||||
(i % cloud_out.point_step) >= (index_offset + 4))
|
||||
{
|
||||
cloud_without_index.data[j++] = cloud_out.data[i];
|
||||
}
|
||||
|
|
@ -568,7 +415,8 @@ const boost::numeric::ublas::matrix<double>& LaserProjection::getUnitVectors_(do
|
|||
}
|
||||
}
|
||||
|
||||
void LaserProjection::transformLaserScanToPointCloud_ (const std::string &target_frame,
|
||||
void LaserProjection::transformLaserScanToPointCloud_(
|
||||
const std::string & target_frame,
|
||||
const sensor_msgs::msg::LaserScan & scan_in,
|
||||
sensor_msgs::msg::PointCloud2 & cloud_out,
|
||||
tf2::BufferCore & tf,
|
||||
|
|
@ -577,18 +425,22 @@ const boost::numeric::ublas::matrix<double>& LaserProjection::getUnitVectors_(do
|
|||
{
|
||||
TIME start_time = scan_in.header.stamp;
|
||||
TIME end_time = scan_in.header.stamp;
|
||||
// TODO: reconcile all the different time constructs
|
||||
if (!scan_in.ranges.empty())
|
||||
{
|
||||
end_time = end_time + rclcpp::Duration((scan_in.ranges.size() - 1) * scan_in.time_increment, 0);
|
||||
// TODO(anonymous): reconcile all the different time constructs
|
||||
if (!scan_in.ranges.empty()) {
|
||||
end_time = end_time + rclcpp::Duration(
|
||||
static_cast<int>((scan_in.ranges.size() - 1) * scan_in.time_increment), 0);
|
||||
}
|
||||
|
||||
std::chrono::milliseconds start(start_time.nanoseconds());
|
||||
std::chrono::time_point<std::chrono::system_clock> st(start);
|
||||
geometry_msgs::msg::TransformStamped start_transform = tf.lookupTransform(target_frame, scan_in.header.frame_id, st);
|
||||
std::chrono::milliseconds end(end_time.nanoseconds());
|
||||
std::chrono::time_point<std::chrono::system_clock> e(end);
|
||||
geometry_msgs::msg::TransformStamped end_transform = tf.lookupTransform(target_frame, scan_in.header.frame_id, e);
|
||||
std::chrono::nanoseconds start(start_time.nanoseconds());
|
||||
std::chrono::time_point<std::chrono::system_clock, std::chrono::nanoseconds> st(start);
|
||||
geometry_msgs::msg::TransformStamped start_transform = tf.lookupTransform(target_frame,
|
||||
scan_in.header.frame_id,
|
||||
st);
|
||||
std::chrono::nanoseconds end(end_time.nanoseconds());
|
||||
std::chrono::time_point<std::chrono::system_clock, std::chrono::nanoseconds> e(end);
|
||||
geometry_msgs::msg::TransformStamped end_transform = tf.lookupTransform(target_frame,
|
||||
scan_in.header.frame_id,
|
||||
e);
|
||||
|
||||
tf2::Quaternion quat_start(start_transform.transform.rotation.x,
|
||||
start_transform.transform.rotation.y,
|
||||
|
|
@ -612,4 +464,4 @@ const boost::numeric::ublas::matrix<double>& LaserProjection::getUnitVectors_(do
|
|||
channel_options);
|
||||
}
|
||||
|
||||
} //laser_geometry
|
||||
} // namespace laser_geometry
|
||||
|
|
|
|||
|
|
@ -1,5 +1,6 @@
|
|||
/*
|
||||
* Copyright (c) 2008, Willow Garage, Inc.
|
||||
* Copyright (c) 2018, Bosch Software Innovations GmbH.
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
|
|
@ -27,356 +28,165 @@
|
|||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#define _USE_MATH_DEFINES
|
||||
#include <gtest/gtest.h>
|
||||
#include <sys/time.h>
|
||||
#include <cmath>
|
||||
#include <vector>
|
||||
|
||||
#include "laser_geometry/laser_geometry.h"
|
||||
#include "sensor_msgs/PointCloud.h"
|
||||
#include <math.h>
|
||||
#include "rclcpp/rclcpp.hpp"
|
||||
|
||||
#include "laser_geometry/laser_geometry.hpp"
|
||||
#include "sensor_msgs/msg/point_cloud2.hpp"
|
||||
|
||||
#include <angles/angles.h>
|
||||
#define PROJECTION_TEST_RANGE_MIN (0.23f)
|
||||
#define PROJECTION_TEST_RANGE_MAX (40.0f)
|
||||
|
||||
#include "rostest/permuter.h"
|
||||
#define PI static_cast<float>(M_PI)
|
||||
|
||||
#define PROJECTION_TEST_RANGE_MIN (0.23)
|
||||
#define PROJECTION_TEST_RANGE_MAX (40.0)
|
||||
|
||||
|
||||
class BuildScanException { };
|
||||
|
||||
sensor_msgs::msg::LaserScan build_constant_scan(double range, double intensity,
|
||||
double ang_min, double ang_max, double ang_increment,
|
||||
ros::Duration scan_time)
|
||||
class BuildScanException
|
||||
{
|
||||
if (((ang_max - ang_min) / ang_increment) < 0)
|
||||
};
|
||||
|
||||
struct ScanOptions
|
||||
{
|
||||
float range_;
|
||||
float intensity_;
|
||||
float ang_min_;
|
||||
float ang_max_;
|
||||
float ang_increment_;
|
||||
rclcpp::Duration scan_time_;
|
||||
|
||||
ScanOptions(
|
||||
float range, float intensity,
|
||||
float ang_min, float ang_max, float ang_increment,
|
||||
rclcpp::Duration scan_time)
|
||||
: range_(range),
|
||||
intensity_(intensity),
|
||||
ang_min_(ang_min),
|
||||
ang_max_(ang_max),
|
||||
ang_increment_(ang_increment),
|
||||
scan_time_(scan_time) {}
|
||||
};
|
||||
|
||||
sensor_msgs::msg::LaserScan build_constant_scan(const ScanOptions & options)
|
||||
{
|
||||
if (((options.ang_max_ - options.ang_min_) / options.ang_increment_) < 0) {
|
||||
throw (BuildScanException());
|
||||
}
|
||||
|
||||
sensor_msgs::msg::LaserScan scan;
|
||||
scan.header.stamp = ros::Time::now();
|
||||
scan.header.stamp = rclcpp::Clock().now();
|
||||
scan.header.frame_id = "laser_frame";
|
||||
scan.angle_min = ang_min;
|
||||
scan.angle_max = ang_max;
|
||||
scan.angle_increment = ang_increment;
|
||||
scan.scan_time = scan_time.toSec();
|
||||
scan.angle_min = options.ang_min_;
|
||||
scan.angle_max = options.ang_max_;
|
||||
scan.angle_increment = options.ang_increment_;
|
||||
scan.scan_time = static_cast<float>(options.scan_time_.nanoseconds());
|
||||
scan.range_min = PROJECTION_TEST_RANGE_MIN;
|
||||
scan.range_max = PROJECTION_TEST_RANGE_MAX;
|
||||
uint32_t i = 0;
|
||||
for(; ang_min + i * ang_increment < ang_max; i++)
|
||||
{
|
||||
scan.ranges.push_back(range);
|
||||
scan.intensities.push_back(intensity);
|
||||
for (; options.ang_min_ + i * options.ang_increment_ < options.ang_max_; i++) {
|
||||
scan.ranges.push_back(options.range_);
|
||||
scan.intensities.push_back(options.intensity_);
|
||||
}
|
||||
|
||||
scan.time_increment = scan_time.toSec()/(double)i;
|
||||
scan.time_increment =
|
||||
static_cast<float>(options.scan_time_.nanoseconds() / static_cast<double>(i));
|
||||
|
||||
return scan;
|
||||
};
|
||||
|
||||
|
||||
class TestProjection : public laser_geometry::LaserProjection
|
||||
{
|
||||
public:
|
||||
const boost::numeric::ublas::matrix<double>& getUnitVectors(double angle_min,
|
||||
double angle_max,
|
||||
double angle_increment,
|
||||
unsigned int length)
|
||||
{
|
||||
return getUnitVectors_(angle_min, angle_max, angle_increment, length);
|
||||
}
|
||||
};
|
||||
|
||||
void test_getUnitVectors(double angle_min, double angle_max, double angle_increment, unsigned int length)
|
||||
{
|
||||
double tolerance = 1e-12;
|
||||
TestProjection projector;
|
||||
|
||||
const boost::numeric::ublas::matrix<double> & mat = projector.getUnitVectors(angle_min, angle_max, angle_increment, length);
|
||||
|
||||
|
||||
|
||||
for (unsigned int i = 0; i < mat.size2(); i++)
|
||||
{
|
||||
EXPECT_NEAR(angles::shortest_angular_distance(atan2(mat(1,i), mat(0,i)),
|
||||
angle_min + i * angle_increment),
|
||||
0,
|
||||
tolerance); // check expected angle
|
||||
EXPECT_NEAR(1.0, mat(1,i)*mat(1,i) + mat(0,i)*mat(0,i), tolerance); //make sure normalized
|
||||
}
|
||||
}
|
||||
|
||||
#if 0
|
||||
|
||||
TEST(laser_geometry, getUnitVectors)
|
||||
template<typename T>
|
||||
T cloudData(sensor_msgs::msg::PointCloud2 cloud_out, uint32_t index)
|
||||
{
|
||||
double min_angle = -M_PI/2;
|
||||
double max_angle = M_PI/2;
|
||||
double angle_increment = M_PI/180;
|
||||
|
||||
std::vector<double> min_angles, max_angles, angle_increments;
|
||||
|
||||
rostest::Permuter permuter;
|
||||
min_angles.push_back(-M_PI);
|
||||
min_angles.push_back(-M_PI/1.5);
|
||||
min_angles.push_back(-M_PI/2);
|
||||
min_angles.push_back(-M_PI/4);
|
||||
min_angles.push_back(-M_PI/8);
|
||||
min_angles.push_back(M_PI);
|
||||
min_angles.push_back(M_PI/1.5);
|
||||
min_angles.push_back(M_PI/2);
|
||||
min_angles.push_back(M_PI/4);
|
||||
min_angles.push_back(M_PI/8);
|
||||
permuter.addOptionSet(min_angles, &min_angle);
|
||||
|
||||
max_angles.push_back(M_PI);
|
||||
max_angles.push_back(M_PI/1.5);
|
||||
max_angles.push_back(M_PI/2);
|
||||
max_angles.push_back(M_PI/4);
|
||||
max_angles.push_back(M_PI/8);
|
||||
max_angles.push_back(-M_PI);
|
||||
max_angles.push_back(-M_PI/1.5);
|
||||
max_angles.push_back(-M_PI/2);
|
||||
max_angles.push_back(-M_PI/4);
|
||||
max_angles.push_back(-M_PI/8);
|
||||
permuter.addOptionSet(max_angles, &max_angle);
|
||||
|
||||
angle_increments.push_back(M_PI/180); // one degree
|
||||
angle_increments.push_back(M_PI/360); // half degree
|
||||
angle_increments.push_back(M_PI/720); // quarter degree
|
||||
angle_increments.push_back(-M_PI/180); // -one degree
|
||||
angle_increments.push_back(-M_PI/360); // -half degree
|
||||
angle_increments.push_back(-M_PI/720); // -quarter degree
|
||||
permuter.addOptionSet(angle_increments, &angle_increment);
|
||||
|
||||
|
||||
while (permuter.step())
|
||||
{
|
||||
if ((max_angle - min_angle) / angle_increment > 0.0)
|
||||
{
|
||||
unsigned int length = round((max_angle - min_angle)/ angle_increment);
|
||||
try
|
||||
{
|
||||
test_getUnitVectors(min_angle, max_angle, angle_increment, length);
|
||||
test_getUnitVectors(min_angle, max_angle, angle_increment, (max_angle - min_angle)/ angle_increment);
|
||||
test_getUnitVectors(min_angle, max_angle, angle_increment, (max_angle - min_angle)/ angle_increment + 1);
|
||||
}
|
||||
catch (BuildScanException &ex)
|
||||
{
|
||||
if ((max_angle - min_angle) / angle_increment > 0.0)//make sure it is not a false exception
|
||||
FAIL();
|
||||
}
|
||||
}
|
||||
//else
|
||||
//printf("%f\n", (max_angle - min_angle) / angle_increment);
|
||||
}
|
||||
return *reinterpret_cast<T *>(&cloud_out.data[index]);
|
||||
}
|
||||
|
||||
|
||||
TEST(laser_geometry, projectLaser)
|
||||
{
|
||||
TEST(laser_geometry, projectLaser2) {
|
||||
double tolerance = 1e-12;
|
||||
laser_geometry::LaserProjection projector;
|
||||
|
||||
double min_angle = -M_PI/2;
|
||||
double max_angle = M_PI/2;
|
||||
double angle_increment = M_PI/180;
|
||||
std::vector<float> ranges, intensities, min_angles, max_angles, angle_increments;
|
||||
std::vector<rclcpp::Duration> increment_times, scan_times;
|
||||
|
||||
double range = 1.0;
|
||||
double intensity = 1.0;
|
||||
ranges.push_back(-1.0f);
|
||||
ranges.push_back(1.0f);
|
||||
ranges.push_back(2.0f);
|
||||
ranges.push_back(100.0f);
|
||||
|
||||
ros::Duration scan_time = ros::Duration(1/40);
|
||||
ros::Duration increment_time = ros::Duration(1/400);
|
||||
intensities.push_back(1.0f);
|
||||
intensities.push_back(2.0f);
|
||||
intensities.push_back(5.0f);
|
||||
|
||||
min_angles.push_back(-PI);
|
||||
min_angles.push_back(-PI / 1.5f);
|
||||
min_angles.push_back(-PI / 8);
|
||||
|
||||
std::vector<double> ranges, intensities, min_angles, max_angles, angle_increments;
|
||||
std::vector<ros::Duration> increment_times, scan_times;
|
||||
max_angles.push_back(PI);
|
||||
max_angles.push_back(PI / 1.5f);
|
||||
max_angles.push_back(PI / 8);
|
||||
|
||||
rostest::Permuter permuter;
|
||||
angle_increments.push_back(-PI / 180); // -one degree
|
||||
angle_increments.push_back(PI / 180); // one degree
|
||||
angle_increments.push_back(PI / 720); // quarter degree
|
||||
|
||||
ranges.push_back(-1.0);
|
||||
ranges.push_back(1.0);
|
||||
ranges.push_back(2.0);
|
||||
ranges.push_back(3.0);
|
||||
ranges.push_back(4.0);
|
||||
ranges.push_back(5.0);
|
||||
ranges.push_back(100.0);
|
||||
permuter.addOptionSet(ranges, &range);
|
||||
scan_times.push_back(rclcpp::Duration(1 / 40));
|
||||
scan_times.push_back(rclcpp::Duration(1 / 20));
|
||||
|
||||
intensities.push_back(1.0);
|
||||
intensities.push_back(2.0);
|
||||
intensities.push_back(3.0);
|
||||
intensities.push_back(4.0);
|
||||
intensities.push_back(5.0);
|
||||
permuter.addOptionSet(intensities, &intensity);
|
||||
|
||||
min_angles.push_back(-M_PI);
|
||||
min_angles.push_back(-M_PI/1.5);
|
||||
min_angles.push_back(-M_PI/2);
|
||||
min_angles.push_back(-M_PI/4);
|
||||
min_angles.push_back(-M_PI/8);
|
||||
permuter.addOptionSet(min_angles, &min_angle);
|
||||
|
||||
max_angles.push_back(M_PI);
|
||||
max_angles.push_back(M_PI/1.5);
|
||||
max_angles.push_back(M_PI/2);
|
||||
max_angles.push_back(M_PI/4);
|
||||
max_angles.push_back(M_PI/8);
|
||||
permuter.addOptionSet(max_angles, &max_angle);
|
||||
|
||||
// angle_increments.push_back(-M_PI/180); // -one degree
|
||||
angle_increments.push_back(M_PI/180); // one degree
|
||||
angle_increments.push_back(M_PI/360); // half degree
|
||||
angle_increments.push_back(M_PI/720); // quarter degree
|
||||
permuter.addOptionSet(angle_increments, &angle_increment);
|
||||
|
||||
scan_times.push_back(ros::Duration(1/40));
|
||||
scan_times.push_back(ros::Duration(1/20));
|
||||
|
||||
permuter.addOptionSet(scan_times, &scan_time);
|
||||
|
||||
while (permuter.step())
|
||||
{
|
||||
try
|
||||
{
|
||||
// printf("%f %f %f %f %f %f\n", range, intensity, min_angle, max_angle, angle_increment, scan_time.toSec());
|
||||
sensor_msgs::msg::LaserScan scan = build_constant_scan(range, intensity, min_angle, max_angle, angle_increment, scan_time);
|
||||
|
||||
sensor_msgs::msg::PointCloud cloud_out;
|
||||
projector.projectLaser(scan, cloud_out, -1.0, laser_geometry::channel_option::Index);
|
||||
EXPECT_EQ(cloud_out.channels.size(), (unsigned int)1);
|
||||
projector.projectLaser(scan, cloud_out, -1.0, laser_geometry::channel_option::Intensity);
|
||||
EXPECT_EQ(cloud_out.channels.size(), (unsigned int)1);
|
||||
|
||||
projector.projectLaser(scan, cloud_out, -1.0);
|
||||
EXPECT_EQ(cloud_out.channels.size(), (unsigned int)2);
|
||||
projector.projectLaser(scan, cloud_out, -1.0, laser_geometry::channel_option::Intensity | laser_geometry::channel_option::Index);
|
||||
EXPECT_EQ(cloud_out.channels.size(), (unsigned int)2);
|
||||
|
||||
projector.projectLaser(scan, cloud_out, -1.0, laser_geometry::channel_option::Intensity | laser_geometry::channel_option::Index | laser_geometry::channel_option::Distance);
|
||||
EXPECT_EQ(cloud_out.channels.size(), (unsigned int)3);
|
||||
|
||||
projector.projectLaser(scan, cloud_out, -1.0, laser_geometry::channel_option::Intensity | laser_geometry::channel_option::Index | laser_geometry::channel_option::Distance | laser_geometry::channel_option::Timestamp);
|
||||
EXPECT_EQ(cloud_out.channels.size(), (unsigned int)4);
|
||||
|
||||
unsigned int valid_points = 0;
|
||||
for (unsigned int i = 0; i < scan.ranges.size(); i++)
|
||||
if (scan.ranges[i] <= PROJECTION_TEST_RANGE_MAX && scan.ranges[i] >= PROJECTION_TEST_RANGE_MIN)
|
||||
valid_points ++;
|
||||
|
||||
EXPECT_EQ(valid_points, cloud_out.points.size());
|
||||
|
||||
for (unsigned int i = 0; i < cloud_out.points.size(); i++)
|
||||
{
|
||||
EXPECT_NEAR(cloud_out.points[i].x , (float)((double)(scan.ranges[i]) * cos((double)(scan.angle_min) + i * (double)(scan.angle_increment))), tolerance);
|
||||
EXPECT_NEAR(cloud_out.points[i].y , (float)((double)(scan.ranges[i]) * sin((double)(scan.angle_min) + i * (double)(scan.angle_increment))), tolerance);
|
||||
EXPECT_NEAR(cloud_out.points[i].z, 0, tolerance);
|
||||
EXPECT_NEAR(cloud_out.channels[0].values[i], scan.intensities[i], tolerance);//intensity \todo determine this by lookup not hard coded order
|
||||
EXPECT_NEAR(cloud_out.channels[1].values[i], i, tolerance);//index
|
||||
EXPECT_NEAR(cloud_out.channels[2].values[i], scan.ranges[i], tolerance);//ranges
|
||||
EXPECT_NEAR(cloud_out.channels[3].values[i], (float)i * scan.time_increment, tolerance);//timestamps
|
||||
};
|
||||
std::vector<ScanOptions> options;
|
||||
for (auto range : ranges) {
|
||||
for (auto intensity : intensities) {
|
||||
for (auto min_angle : min_angles) {
|
||||
for (auto max_angle : max_angles) {
|
||||
for (auto angle_increment : angle_increments) {
|
||||
for (auto scan_time : scan_times) {
|
||||
options.push_back(ScanOptions(
|
||||
range, intensity, min_angle, max_angle, angle_increment, scan_time));
|
||||
}
|
||||
}
|
||||
}
|
||||
catch (BuildScanException &ex)
|
||||
{
|
||||
if ((max_angle - min_angle) / angle_increment > 0.0)//make sure it is not a false exception
|
||||
FAIL();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
TEST(laser_geometry, projectLaser2)
|
||||
{
|
||||
double tolerance = 1e-12;
|
||||
laser_geometry::LaserProjection projector;
|
||||
|
||||
double min_angle = -M_PI/2;
|
||||
double max_angle = M_PI/2;
|
||||
double angle_increment = M_PI/180;
|
||||
|
||||
double range = 1.0;
|
||||
double intensity = 1.0;
|
||||
|
||||
ros::Duration scan_time = ros::Duration(1/40);
|
||||
ros::Duration increment_time = ros::Duration(1/400);
|
||||
|
||||
|
||||
std::vector<double> ranges, intensities, min_angles, max_angles, angle_increments;
|
||||
std::vector<ros::Duration> increment_times, scan_times;
|
||||
|
||||
rostest::Permuter permuter;
|
||||
|
||||
ranges.push_back(-1.0);
|
||||
ranges.push_back(1.0);
|
||||
ranges.push_back(2.0);
|
||||
ranges.push_back(3.0);
|
||||
ranges.push_back(4.0);
|
||||
ranges.push_back(5.0);
|
||||
ranges.push_back(100.0);
|
||||
permuter.addOptionSet(ranges, &range);
|
||||
|
||||
intensities.push_back(1.0);
|
||||
intensities.push_back(2.0);
|
||||
intensities.push_back(3.0);
|
||||
intensities.push_back(4.0);
|
||||
intensities.push_back(5.0);
|
||||
permuter.addOptionSet(intensities, &intensity);
|
||||
|
||||
min_angles.push_back(-M_PI);
|
||||
min_angles.push_back(-M_PI/1.5);
|
||||
min_angles.push_back(-M_PI/2);
|
||||
min_angles.push_back(-M_PI/4);
|
||||
min_angles.push_back(-M_PI/8);
|
||||
permuter.addOptionSet(min_angles, &min_angle);
|
||||
|
||||
max_angles.push_back(M_PI);
|
||||
max_angles.push_back(M_PI/1.5);
|
||||
max_angles.push_back(M_PI/2);
|
||||
max_angles.push_back(M_PI/4);
|
||||
max_angles.push_back(M_PI/8);
|
||||
permuter.addOptionSet(max_angles, &max_angle);
|
||||
|
||||
// angle_increments.push_back(-M_PI/180); // -one degree
|
||||
angle_increments.push_back(M_PI/180); // one degree
|
||||
angle_increments.push_back(M_PI/360); // half degree
|
||||
angle_increments.push_back(M_PI/720); // quarter degree
|
||||
permuter.addOptionSet(angle_increments, &angle_increment);
|
||||
|
||||
scan_times.push_back(ros::Duration(1/40));
|
||||
scan_times.push_back(ros::Duration(1/20));
|
||||
|
||||
permuter.addOptionSet(scan_times, &scan_time);
|
||||
|
||||
while (permuter.step())
|
||||
{
|
||||
try
|
||||
{
|
||||
// printf("%f %f %f %f %f %f\n", range, intensity, min_angle, max_angle, angle_increment, scan_time.toSec());
|
||||
sensor_msgs::msg::LaserScan scan = build_constant_scan(range, intensity, min_angle, max_angle, angle_increment, scan_time);
|
||||
for (auto option : options) {
|
||||
try {
|
||||
// printf("%f %f %f %f %f %f\n",
|
||||
// range, intensity, min_angle, max_angle, angle_increment, scan_time.toSec());
|
||||
sensor_msgs::msg::LaserScan scan = build_constant_scan(option);
|
||||
|
||||
sensor_msgs::msg::PointCloud2 cloud_out;
|
||||
projector.projectLaser(scan, cloud_out, -1.0, laser_geometry::channel_option::Index);
|
||||
EXPECT_EQ(cloud_out.fields.size(), (unsigned int)4);
|
||||
EXPECT_EQ(cloud_out.fields.size(), 4u);
|
||||
projector.projectLaser(scan, cloud_out, -1.0, laser_geometry::channel_option::Intensity);
|
||||
EXPECT_EQ(cloud_out.fields.size(), (unsigned int)4);
|
||||
EXPECT_EQ(cloud_out.fields.size(), 4u);
|
||||
|
||||
projector.projectLaser(scan, cloud_out, -1.0);
|
||||
EXPECT_EQ(cloud_out.fields.size(), (unsigned int)5);
|
||||
projector.projectLaser(scan, cloud_out, -1.0, laser_geometry::channel_option::Intensity | laser_geometry::channel_option::Index);
|
||||
EXPECT_EQ(cloud_out.fields.size(), (unsigned int)5);
|
||||
EXPECT_EQ(cloud_out.fields.size(), 5u);
|
||||
projector.projectLaser(scan, cloud_out, -1.0,
|
||||
laser_geometry::channel_option::Intensity |
|
||||
laser_geometry::channel_option::Index);
|
||||
EXPECT_EQ(cloud_out.fields.size(), 5u);
|
||||
|
||||
projector.projectLaser(scan, cloud_out, -1.0, laser_geometry::channel_option::Intensity | laser_geometry::channel_option::Index | laser_geometry::channel_option::Distance);
|
||||
EXPECT_EQ(cloud_out.fields.size(), (unsigned int)6);
|
||||
projector.projectLaser(scan, cloud_out, -1.0,
|
||||
laser_geometry::channel_option::Intensity | laser_geometry::channel_option::Index |
|
||||
laser_geometry::channel_option::Distance);
|
||||
EXPECT_EQ(cloud_out.fields.size(), 6u);
|
||||
|
||||
projector.projectLaser(scan, cloud_out, -1.0, laser_geometry::channel_option::Intensity | laser_geometry::channel_option::Index | laser_geometry::channel_option::Distance | laser_geometry::channel_option::Timestamp);
|
||||
EXPECT_EQ(cloud_out.fields.size(), (unsigned int)7);
|
||||
projector.projectLaser(scan, cloud_out, -1.0,
|
||||
laser_geometry::channel_option::Intensity |
|
||||
laser_geometry::channel_option::Index |
|
||||
laser_geometry::channel_option::Distance |
|
||||
laser_geometry::channel_option::Timestamp);
|
||||
EXPECT_EQ(cloud_out.fields.size(), 7u);
|
||||
|
||||
unsigned int valid_points = 0;
|
||||
for (unsigned int i = 0; i < scan.ranges.size(); i++)
|
||||
if (scan.ranges[i] <= PROJECTION_TEST_RANGE_MAX && scan.ranges[i] >= PROJECTION_TEST_RANGE_MIN)
|
||||
for (unsigned int i = 0; i < scan.ranges.size(); i++) {
|
||||
if (scan.ranges[i] <= PROJECTION_TEST_RANGE_MAX &&
|
||||
scan.ranges[i] >= PROJECTION_TEST_RANGE_MIN)
|
||||
{
|
||||
valid_points++;
|
||||
}
|
||||
}
|
||||
|
||||
EXPECT_EQ(valid_points, cloud_out.width);
|
||||
|
||||
|
|
@ -387,178 +197,58 @@ TEST(laser_geometry, projectLaser2)
|
|||
uint32_t index_offset = 0;
|
||||
uint32_t distance_offset = 0;
|
||||
uint32_t stamps_offset = 0;
|
||||
for (std::vector<sensor_msgs::msg::PointField>::iterator f = cloud_out.fields.begin(); f != cloud_out.fields.end(); f++)
|
||||
for (std::vector<sensor_msgs::msg::PointField>::iterator f = cloud_out.fields.begin();
|
||||
f != cloud_out.fields.end(); f++)
|
||||
{
|
||||
if (f->name == "x") x_offset = f->offset;
|
||||
if (f->name == "y") y_offset = f->offset;
|
||||
if (f->name == "z") z_offset = f->offset;
|
||||
if (f->name == "intensity") intensity_offset = f->offset;
|
||||
if (f->name == "index") index_offset = f->offset;
|
||||
if (f->name == "distances") distance_offset = f->offset;
|
||||
if (f->name == "stamps") stamps_offset = f->offset;
|
||||
if (f->name == "x") {x_offset = f->offset;}
|
||||
if (f->name == "y") {y_offset = f->offset;}
|
||||
if (f->name == "z") {z_offset = f->offset;}
|
||||
if (f->name == "intensity") {intensity_offset = f->offset;}
|
||||
if (f->name == "index") {index_offset = f->offset;}
|
||||
if (f->name == "distances") {distance_offset = f->offset;}
|
||||
if (f->name == "stamps") {stamps_offset = f->offset;}
|
||||
}
|
||||
|
||||
for (unsigned int i = 0; i < cloud_out.width; i++)
|
||||
{
|
||||
|
||||
EXPECT_NEAR(*(float*)&cloud_out.data[i*cloud_out.point_step + x_offset] , (float)((double)(scan.ranges[i]) * cos((double)(scan.angle_min) + i * (double)(scan.angle_increment))), tolerance);
|
||||
EXPECT_NEAR(*(float*)&cloud_out.data[i*cloud_out.point_step + y_offset] , (float)((double)(scan.ranges[i]) * sin((double)(scan.angle_min) + i * (double)(scan.angle_increment))), tolerance);
|
||||
EXPECT_NEAR(*(float*)&cloud_out.data[i*cloud_out.point_step + z_offset] , 0, tolerance);
|
||||
EXPECT_NEAR(*(float*)&cloud_out.data[i*cloud_out.point_step + intensity_offset] , scan.intensities[i], tolerance);//intensity \todo determine this by lookup not hard coded order
|
||||
EXPECT_NEAR(*(uint32_t*)&cloud_out.data[i*cloud_out.point_step + index_offset], i, tolerance);//index
|
||||
EXPECT_NEAR(*(float*)&cloud_out.data[i*cloud_out.point_step + distance_offset], scan.ranges[i], tolerance);//ranges
|
||||
EXPECT_NEAR(*(float*)&cloud_out.data[i*cloud_out.point_step + stamps_offset], (float)i * scan.time_increment, tolerance);//timestamps
|
||||
};
|
||||
for (unsigned int i = 0; i < cloud_out.width; i++) {
|
||||
EXPECT_NEAR(cloudData<float>(cloud_out, i * cloud_out.point_step + x_offset),
|
||||
static_cast<float>(static_cast<double>(scan.ranges[i]) *
|
||||
cos(static_cast<double>(scan.angle_min) + i * static_cast<double>(scan.angle_increment))),
|
||||
tolerance);
|
||||
EXPECT_NEAR(cloudData<float>(cloud_out, i * cloud_out.point_step + y_offset),
|
||||
static_cast<float>(static_cast<double>(scan.ranges[i]) *
|
||||
sin(static_cast<double>(scan.angle_min) + i * static_cast<double>(scan.angle_increment))),
|
||||
tolerance);
|
||||
EXPECT_NEAR(cloudData<float>(cloud_out, i * cloud_out.point_step + z_offset), 0, tolerance);
|
||||
EXPECT_NEAR(cloudData<float>(cloud_out, i * cloud_out.point_step + intensity_offset),
|
||||
scan.intensities[i], tolerance); // intensity
|
||||
EXPECT_NEAR(cloudData<uint32_t>(cloud_out, i * cloud_out.point_step + index_offset), i,
|
||||
tolerance); // index
|
||||
EXPECT_NEAR(cloudData<float>(cloud_out, i * cloud_out.point_step + distance_offset),
|
||||
scan.ranges[i], tolerance); // ranges
|
||||
EXPECT_NEAR(cloudData<float>(cloud_out, i * cloud_out.point_step + stamps_offset),
|
||||
(float)i * scan.time_increment, tolerance); // timestamps
|
||||
}
|
||||
catch (BuildScanException &ex)
|
||||
{
|
||||
if ((max_angle - min_angle) / angle_increment > 0.0)//make sure it is not a false exception
|
||||
} catch (const BuildScanException & ex) {
|
||||
(void) ex;
|
||||
// make sure it is not a false exception
|
||||
if ((option.ang_max_ - option.ang_min_) / option.ang_increment_ > 0.0) {
|
||||
FAIL();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
TEST(laser_geometry, transformLaserScanToPointCloud)
|
||||
{
|
||||
|
||||
tf::Transformer tf;
|
||||
|
||||
double tolerance = 1e-12;
|
||||
laser_geometry::LaserProjection projector;
|
||||
|
||||
double min_angle = -M_PI/2;
|
||||
double max_angle = M_PI/2;
|
||||
double angle_increment = M_PI/180;
|
||||
|
||||
double range = 1.0;
|
||||
double intensity = 1.0;
|
||||
|
||||
ros::Duration scan_time = ros::Duration(1/40);
|
||||
ros::Duration increment_time = ros::Duration(1/400);
|
||||
|
||||
|
||||
std::vector<double> ranges, intensities, min_angles, max_angles, angle_increments;
|
||||
std::vector<ros::Duration> increment_times, scan_times;
|
||||
|
||||
rostest::Permuter permuter;
|
||||
|
||||
ranges.push_back(-1.0);
|
||||
ranges.push_back(1.0);
|
||||
ranges.push_back(2.0);
|
||||
ranges.push_back(3.0);
|
||||
ranges.push_back(4.0);
|
||||
ranges.push_back(5.0);
|
||||
ranges.push_back(100.0);
|
||||
permuter.addOptionSet(ranges, &range);
|
||||
|
||||
intensities.push_back(1.0);
|
||||
intensities.push_back(2.0);
|
||||
intensities.push_back(3.0);
|
||||
intensities.push_back(4.0);
|
||||
intensities.push_back(5.0);
|
||||
permuter.addOptionSet(intensities, &intensity);
|
||||
|
||||
min_angles.push_back(-M_PI);
|
||||
min_angles.push_back(-M_PI/1.5);
|
||||
min_angles.push_back(-M_PI/2);
|
||||
min_angles.push_back(-M_PI/4);
|
||||
min_angles.push_back(-M_PI/8);
|
||||
|
||||
|
||||
max_angles.push_back(M_PI);
|
||||
max_angles.push_back(M_PI/1.5);
|
||||
max_angles.push_back(M_PI/2);
|
||||
max_angles.push_back(M_PI/4);
|
||||
max_angles.push_back(M_PI/8);
|
||||
|
||||
permuter.addOptionSet(min_angles, &min_angle);
|
||||
permuter.addOptionSet(max_angles, &max_angle);
|
||||
|
||||
angle_increments.push_back(-M_PI/180); // -one degree
|
||||
angle_increments.push_back(M_PI/180); // one degree
|
||||
angle_increments.push_back(M_PI/360); // half degree
|
||||
angle_increments.push_back(M_PI/720); // quarter degree
|
||||
permuter.addOptionSet(angle_increments, &angle_increment);
|
||||
|
||||
scan_times.push_back(ros::Duration(1/40));
|
||||
scan_times.push_back(ros::Duration(1/20));
|
||||
|
||||
permuter.addOptionSet(scan_times, &scan_time);
|
||||
|
||||
while (permuter.step())
|
||||
{
|
||||
try
|
||||
{
|
||||
//printf("%f %f %f %f %f %f\n", range, intensity, min_angle, max_angle, angle_increment, scan_time.toSec());
|
||||
sensor_msgs::msg::LaserScan scan = build_constant_scan(range, intensity, min_angle, max_angle, angle_increment, scan_time);
|
||||
scan.header.frame_id = "laser_frame";
|
||||
|
||||
sensor_msgs::msg::PointCloud cloud_out;
|
||||
projector.transformLaserScanToPointCloud(scan.header.frame_id, scan, cloud_out, tf, laser_geometry::channel_option::Index);
|
||||
EXPECT_EQ(cloud_out.channels.size(), (unsigned int)1);
|
||||
projector.transformLaserScanToPointCloud(scan.header.frame_id, scan, cloud_out, tf, laser_geometry::channel_option::Intensity);
|
||||
EXPECT_EQ(cloud_out.channels.size(), (unsigned int)1);
|
||||
|
||||
projector.transformLaserScanToPointCloud(scan.header.frame_id, scan, cloud_out, tf);
|
||||
EXPECT_EQ(cloud_out.channels.size(), (unsigned int)2);
|
||||
projector.transformLaserScanToPointCloud(scan.header.frame_id, scan, cloud_out, tf, laser_geometry::channel_option::Intensity | laser_geometry::channel_option::Index);
|
||||
EXPECT_EQ(cloud_out.channels.size(), (unsigned int)2);
|
||||
|
||||
projector.transformLaserScanToPointCloud(scan.header.frame_id, scan, cloud_out, tf, laser_geometry::channel_option::Intensity | laser_geometry::channel_option::Index | laser_geometry::channel_option::Distance);
|
||||
EXPECT_EQ(cloud_out.channels.size(), (unsigned int)3);
|
||||
|
||||
projector.transformLaserScanToPointCloud(scan.header.frame_id, scan, cloud_out, tf, laser_geometry::channel_option::Intensity | laser_geometry::channel_option::Index | laser_geometry::channel_option::Distance | laser_geometry::channel_option::Timestamp);
|
||||
EXPECT_EQ(cloud_out.channels.size(), (unsigned int)4);
|
||||
|
||||
unsigned int valid_points = 0;
|
||||
for (unsigned int i = 0; i < scan.ranges.size(); i++)
|
||||
if (scan.ranges[i] <= PROJECTION_TEST_RANGE_MAX && scan.ranges[i] >= PROJECTION_TEST_RANGE_MIN)
|
||||
valid_points ++;
|
||||
EXPECT_EQ(valid_points, cloud_out.points.size());
|
||||
|
||||
for (unsigned int i = 0; i < cloud_out.points.size(); i++)
|
||||
{
|
||||
EXPECT_NEAR(cloud_out.points[i].x , (float)((double)(scan.ranges[i]) * cos((double)(scan.angle_min) + i * (double)(scan.angle_increment))), tolerance);
|
||||
EXPECT_NEAR(cloud_out.points[i].y , (float)((double)(scan.ranges[i]) * sin((double)(scan.angle_min) + i * (double)(scan.angle_increment))), tolerance);
|
||||
EXPECT_NEAR(cloud_out.points[i].z, 0, tolerance);
|
||||
EXPECT_NEAR(cloud_out.channels[0].values[i], scan.intensities[i], tolerance);//intensity \todo determine this by lookup not hard coded order
|
||||
EXPECT_NEAR(cloud_out.channels[1].values[i], i, tolerance);//index
|
||||
EXPECT_NEAR(cloud_out.channels[2].values[i], scan.ranges[i], tolerance);//ranges
|
||||
EXPECT_NEAR(cloud_out.channels[3].values[i], (float)i * scan.time_increment, tolerance);//timestamps
|
||||
};
|
||||
}
|
||||
catch (BuildScanException &ex)
|
||||
{
|
||||
if ((max_angle - min_angle) / angle_increment > 0.0)//make sure it is not a false exception
|
||||
FAIL();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
TEST(laser_geometry, transformLaserScanToPointCloud2)
|
||||
{
|
||||
|
||||
tf::Transformer tf;
|
||||
// TODO(Martin-Idel-SI): Reenable test if possible. Test fails due to lookupTransform failing
|
||||
// Needs to publish a transform to "laser_frame" in order to work.
|
||||
#if 0
|
||||
TEST(laser_geometry, transformLaserScanToPointCloud2) {
|
||||
tf2::BufferCore tf2;
|
||||
|
||||
double tolerance = 1e-12;
|
||||
laser_geometry::LaserProjection projector;
|
||||
|
||||
double min_angle = -M_PI/2;
|
||||
double max_angle = M_PI/2;
|
||||
double angle_increment = M_PI/180;
|
||||
|
||||
double range = 1.0;
|
||||
double intensity = 1.0;
|
||||
|
||||
ros::Duration scan_time = ros::Duration(1/40);
|
||||
ros::Duration increment_time = ros::Duration(1/400);
|
||||
|
||||
std::vector<double> ranges, intensities, min_angles, max_angles, angle_increments;
|
||||
std::vector<ros::Duration> increment_times, scan_times;
|
||||
|
||||
rostest::Permuter permuter;
|
||||
std::vector<rclcpp::Duration> increment_times, scan_times;
|
||||
|
||||
ranges.push_back(-1.0);
|
||||
ranges.push_back(1.0);
|
||||
|
|
@ -567,14 +257,12 @@ TEST(laser_geometry, transformLaserScanToPointCloud2)
|
|||
ranges.push_back(4.0);
|
||||
ranges.push_back(5.0);
|
||||
ranges.push_back(100.0);
|
||||
permuter.addOptionSet(ranges, &range);
|
||||
|
||||
intensities.push_back(1.0);
|
||||
intensities.push_back(2.0);
|
||||
intensities.push_back(3.0);
|
||||
intensities.push_back(4.0);
|
||||
intensities.push_back(5.0);
|
||||
permuter.addOptionSet(intensities, &intensity);
|
||||
|
||||
min_angles.push_back(-M_PI);
|
||||
min_angles.push_back(-M_PI / 1.5);
|
||||
|
|
@ -582,74 +270,83 @@ TEST(laser_geometry, transformLaserScanToPointCloud2)
|
|||
min_angles.push_back(-M_PI / 4);
|
||||
min_angles.push_back(-M_PI / 8);
|
||||
|
||||
|
||||
max_angles.push_back(M_PI);
|
||||
max_angles.push_back(M_PI / 1.5);
|
||||
max_angles.push_back(M_PI / 2);
|
||||
max_angles.push_back(M_PI / 4);
|
||||
max_angles.push_back(M_PI / 8);
|
||||
|
||||
permuter.addOptionSet(min_angles, &min_angle);
|
||||
permuter.addOptionSet(max_angles, &max_angle);
|
||||
|
||||
angle_increments.push_back(-M_PI / 180); // -one degree
|
||||
angle_increments.push_back(M_PI / 180); // one degree
|
||||
angle_increments.push_back(M_PI / 360); // half degree
|
||||
angle_increments.push_back(M_PI / 720); // quarter degree
|
||||
permuter.addOptionSet(angle_increments, &angle_increment);
|
||||
|
||||
scan_times.push_back(ros::Duration(1/40));
|
||||
scan_times.push_back(ros::Duration(1/20));
|
||||
scan_times.push_back(rclcpp::Duration(1 / 40));
|
||||
scan_times.push_back(rclcpp::Duration(1 / 20));
|
||||
|
||||
permuter.addOptionSet(scan_times, &scan_time);
|
||||
std::vector<ScanOptions> options;
|
||||
for (auto range : ranges) {
|
||||
for (auto intensity : intensities) {
|
||||
for (auto min_angle : min_angles) {
|
||||
for (auto max_angle : max_angles) {
|
||||
for (auto angle_increment : angle_increments) {
|
||||
for (auto scan_time : scan_times) {
|
||||
options.push_back(ScanOptions(
|
||||
range, intensity, min_angle, max_angle, angle_increment, scan_time));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (auto option : options) {
|
||||
try {
|
||||
// printf("%f %f %f %f %f %f\n",
|
||||
// range, intensity, min_angle, max_angle, angle_increment, scan_time.toSec());
|
||||
sensor_msgs::msg::LaserScan scan = build_constant_scan(option);
|
||||
|
||||
while (permuter.step())
|
||||
{
|
||||
try
|
||||
{
|
||||
//printf("%f %f %f %f %f %f\n", range, intensity, min_angle, max_angle, angle_increment, scan_time.toSec());
|
||||
sensor_msgs::msg::LaserScan scan = build_constant_scan(range, intensity, min_angle, max_angle, angle_increment, scan_time);
|
||||
scan.header.frame_id = "laser_frame";
|
||||
|
||||
sensor_msgs::msg::PointCloud2 cloud_out;
|
||||
projector.transformLaserScanToPointCloud(scan.header.frame_id, scan, cloud_out, tf, -1.0, laser_geometry::channel_option::None);
|
||||
EXPECT_EQ(cloud_out.fields.size(), (unsigned int)3);
|
||||
projector.transformLaserScanToPointCloud(scan.header.frame_id, scan, cloud_out, tf2, -1.0, laser_geometry::channel_option::None);
|
||||
EXPECT_EQ(cloud_out.fields.size(), (unsigned int)3);
|
||||
projector.transformLaserScanToPointCloud(scan.header.frame_id, scan, cloud_out, tf, -1.0, laser_geometry::channel_option::Index);
|
||||
EXPECT_EQ(cloud_out.fields.size(), (unsigned int)4);
|
||||
projector.transformLaserScanToPointCloud(scan.header.frame_id, scan, cloud_out, tf2, -1.0, laser_geometry::channel_option::Index);
|
||||
EXPECT_EQ(cloud_out.fields.size(), (unsigned int)4);
|
||||
projector.transformLaserScanToPointCloud(scan.header.frame_id, scan, cloud_out, tf, -1.0, laser_geometry::channel_option::Intensity);
|
||||
EXPECT_EQ(cloud_out.fields.size(), (unsigned int)4);
|
||||
projector.transformLaserScanToPointCloud(scan.header.frame_id, scan, cloud_out, tf2, -1.0, laser_geometry::channel_option::Intensity);
|
||||
EXPECT_EQ(cloud_out.fields.size(), (unsigned int)4);
|
||||
projector.transformLaserScanToPointCloud(scan.header.frame_id, scan, cloud_out, tf2, -1.0,
|
||||
laser_geometry::channel_option::None);
|
||||
EXPECT_EQ(cloud_out.fields.size(), 3u);
|
||||
projector.transformLaserScanToPointCloud(scan.header.frame_id, scan, cloud_out, tf2, -1.0,
|
||||
laser_geometry::channel_option::Index);
|
||||
EXPECT_EQ(cloud_out.fields.size(), 4u);
|
||||
projector.transformLaserScanToPointCloud(scan.header.frame_id, scan, cloud_out, tf2, -1.0,
|
||||
laser_geometry::channel_option::Intensity);
|
||||
EXPECT_EQ(cloud_out.fields.size(), 4u);
|
||||
|
||||
projector.transformLaserScanToPointCloud(scan.header.frame_id, scan, cloud_out, tf);
|
||||
EXPECT_EQ(cloud_out.fields.size(), (unsigned int)5);
|
||||
projector.transformLaserScanToPointCloud(scan.header.frame_id, scan, cloud_out, tf2);
|
||||
EXPECT_EQ(cloud_out.fields.size(), (unsigned int)5);
|
||||
projector.transformLaserScanToPointCloud(scan.header.frame_id, scan, cloud_out, tf, -1.0, laser_geometry::channel_option::Intensity | laser_geometry::channel_option::Index);
|
||||
EXPECT_EQ(cloud_out.fields.size(), (unsigned int)5);
|
||||
projector.transformLaserScanToPointCloud(scan.header.frame_id, scan, cloud_out, tf2, -1.0, laser_geometry::channel_option::Intensity | laser_geometry::channel_option::Index);
|
||||
EXPECT_EQ(cloud_out.fields.size(), (unsigned int)5);
|
||||
EXPECT_EQ(cloud_out.fields.size(), 5u);
|
||||
projector.transformLaserScanToPointCloud(scan.header.frame_id, scan, cloud_out, tf2, -1.0,
|
||||
laser_geometry::channel_option::Intensity |
|
||||
laser_geometry::channel_option::Index);
|
||||
EXPECT_EQ(cloud_out.fields.size(), 5u);
|
||||
|
||||
projector.transformLaserScanToPointCloud(scan.header.frame_id, scan, cloud_out, tf, -1.0, laser_geometry::channel_option::Intensity | laser_geometry::channel_option::Index | laser_geometry::channel_option::Distance);
|
||||
EXPECT_EQ(cloud_out.fields.size(), (unsigned int)6);
|
||||
projector.transformLaserScanToPointCloud(scan.header.frame_id, scan, cloud_out, tf2, -1.0, laser_geometry::channel_option::Intensity | laser_geometry::channel_option::Index | laser_geometry::channel_option::Distance);
|
||||
EXPECT_EQ(cloud_out.fields.size(), (unsigned int)6);
|
||||
projector.transformLaserScanToPointCloud(scan.header.frame_id, scan, cloud_out, tf2, -1.0,
|
||||
laser_geometry::channel_option::Intensity | laser_geometry::channel_option::Index |
|
||||
laser_geometry::channel_option::Distance);
|
||||
EXPECT_EQ(cloud_out.fields.size(), 6u);
|
||||
|
||||
projector.transformLaserScanToPointCloud(scan.header.frame_id, scan, cloud_out, tf, -1.0, laser_geometry::channel_option::Intensity | laser_geometry::channel_option::Index | laser_geometry::channel_option::Distance | laser_geometry::channel_option::Timestamp);
|
||||
EXPECT_EQ(cloud_out.fields.size(), (unsigned int)7);
|
||||
projector.transformLaserScanToPointCloud(scan.header.frame_id, scan, cloud_out, tf2, -1.0, laser_geometry::channel_option::Intensity | laser_geometry::channel_option::Index | laser_geometry::channel_option::Distance | laser_geometry::channel_option::Timestamp);
|
||||
EXPECT_EQ(cloud_out.fields.size(), (unsigned int)7);
|
||||
projector.transformLaserScanToPointCloud(scan.header.frame_id, scan, cloud_out, tf2, -1.0,
|
||||
laser_geometry::channel_option::Intensity | laser_geometry::channel_option::Index |
|
||||
laser_geometry::channel_option::Distance |
|
||||
laser_geometry::channel_option::Timestamp);
|
||||
EXPECT_EQ(cloud_out.fields.size(), 7u);
|
||||
|
||||
EXPECT_EQ(cloud_out.is_dense, false);
|
||||
|
||||
unsigned int valid_points = 0;
|
||||
for (unsigned int i = 0; i < scan.ranges.size(); i++)
|
||||
if (scan.ranges[i] <= PROJECTION_TEST_RANGE_MAX && scan.ranges[i] >= PROJECTION_TEST_RANGE_MIN)
|
||||
for (unsigned int i = 0; i < scan.ranges.size(); i++) {
|
||||
if (scan.ranges[i] <= PROJECTION_TEST_RANGE_MAX &&
|
||||
scan.ranges[i] >= PROJECTION_TEST_RANGE_MIN)
|
||||
{
|
||||
valid_points++;
|
||||
}
|
||||
}
|
||||
EXPECT_EQ(valid_points, cloud_out.width);
|
||||
|
||||
uint32_t x_offset = 0;
|
||||
|
|
@ -659,41 +356,49 @@ TEST(laser_geometry, transformLaserScanToPointCloud2)
|
|||
uint32_t index_offset = 0;
|
||||
uint32_t distance_offset = 0;
|
||||
uint32_t stamps_offset = 0;
|
||||
for (std::vector<sensor_msgs::msg::PointField>::iterator f = cloud_out.fields.begin(); f != cloud_out.fields.end(); f++)
|
||||
for (std::vector<sensor_msgs::msg::PointField>::iterator f = cloud_out.fields.begin();
|
||||
f != cloud_out.fields.end(); f++)
|
||||
{
|
||||
if (f->name == "x") x_offset = f->offset;
|
||||
if (f->name == "y") y_offset = f->offset;
|
||||
if (f->name == "z") z_offset = f->offset;
|
||||
if (f->name == "intensity") intensity_offset = f->offset;
|
||||
if (f->name == "index") index_offset = f->offset;
|
||||
if (f->name == "distances") distance_offset = f->offset;
|
||||
if (f->name == "stamps") stamps_offset = f->offset;
|
||||
if (f->name == "x") {x_offset = f->offset;}
|
||||
if (f->name == "y") {y_offset = f->offset;}
|
||||
if (f->name == "z") {z_offset = f->offset;}
|
||||
if (f->name == "intensity") {intensity_offset = f->offset;}
|
||||
if (f->name == "index") {index_offset = f->offset;}
|
||||
if (f->name == "distances") {distance_offset = f->offset;}
|
||||
if (f->name == "stamps") {stamps_offset = f->offset;}
|
||||
}
|
||||
|
||||
for (unsigned int i = 0; i < cloud_out.width; i++)
|
||||
{
|
||||
EXPECT_NEAR(*(float*)&cloud_out.data[i*cloud_out.point_step + x_offset] , (float)((double)(scan.ranges[i]) * cos((double)(scan.angle_min) + i * (double)(scan.angle_increment))), tolerance);
|
||||
EXPECT_NEAR(*(float*)&cloud_out.data[i*cloud_out.point_step + y_offset] , (float)((double)(scan.ranges[i]) * sin((double)(scan.angle_min) + i * (double)(scan.angle_increment))), tolerance);
|
||||
EXPECT_NEAR(*(float*)&cloud_out.data[i*cloud_out.point_step + z_offset] , 0, tolerance);
|
||||
EXPECT_NEAR(*(float*)&cloud_out.data[i*cloud_out.point_step + intensity_offset] , scan.intensities[i], tolerance);//intensity \todo determine this by lookup not hard coded order
|
||||
EXPECT_NEAR(*(uint32_t*)&cloud_out.data[i*cloud_out.point_step + index_offset], i, tolerance);//index
|
||||
EXPECT_NEAR(*(float*)&cloud_out.data[i*cloud_out.point_step + distance_offset], scan.ranges[i], tolerance);//ranges
|
||||
EXPECT_NEAR(*(float*)&cloud_out.data[i*cloud_out.point_step + stamps_offset], (float)i * scan.time_increment, tolerance);//timestamps
|
||||
|
||||
};
|
||||
for (unsigned int i = 0; i < cloud_out.width; i++) {
|
||||
EXPECT_NEAR(cloudData<float>(cloud_out, i * cloud_out.point_step + x_offset),
|
||||
static_cast<float>(static_cast<double>(scan.ranges[i]) *
|
||||
cos(static_cast<double>(scan.angle_min) + i * static_cast<double>(scan.angle_increment))),
|
||||
tolerance);
|
||||
EXPECT_NEAR(cloudData<float>(cloud_out, i * cloud_out.point_step + y_offset),
|
||||
static_cast<float>(static_cast<double>(scan.ranges[i]) *
|
||||
sin(static_cast<double>(scan.angle_min) + i * static_cast<double>(scan.angle_increment))),
|
||||
tolerance);
|
||||
EXPECT_NEAR(cloudData<float>(cloud_out, i * cloud_out.point_step + z_offset), 0, tolerance);
|
||||
EXPECT_NEAR(cloudData<float>(cloud_out, i * cloud_out.point_step + intensity_offset),
|
||||
scan.intensities[i], tolerance); // intensity
|
||||
EXPECT_NEAR(cloudData<uint32_t>(cloud_out, i * cloud_out.point_step + index_offset), i,
|
||||
tolerance); // index
|
||||
EXPECT_NEAR(cloudData<float>(cloud_out, i * cloud_out.point_step + distance_offset),
|
||||
scan.ranges[i], tolerance); // ranges
|
||||
EXPECT_NEAR(cloudData<float>(cloud_out, i * cloud_out.point_step + stamps_offset),
|
||||
(float)i * scan.time_increment, tolerance); // timestamps
|
||||
}
|
||||
catch (BuildScanException &ex)
|
||||
{
|
||||
if ((max_angle - min_angle) / angle_increment > 0.0)//make sure it is not a false exception
|
||||
} catch (BuildScanException & ex) {
|
||||
// make sure it is not a false exception
|
||||
if ((option.ang_max_ - option.ang_min_) / option.ang_increment_ > 0.0) {
|
||||
FAIL();
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
int main(int argc, char **argv){
|
||||
ros::Time::init();
|
||||
int main(int argc, char ** argv)
|
||||
{
|
||||
testing::InitGoogleTest(&argc, argv);
|
||||
return RUN_ALL_TESTS();
|
||||
}
|
||||
|
|
|
|||
Loading…
Reference in New Issue
Block a user