costmap_2d/plugins/obstacle_layer.cpp
2025-10-29 17:38:43 +07:00

587 lines
21 KiB
C++

#include <costmap_2d/obstacle_layer.h>
// #include <costmap_2d/costmap_math.h>
// #include <tf2_ros/message_filter.h>
// #include <pluginlib/class_list_macros.hpp>
// #include <sensor_msgs/point_cloud2_iterator.h>
// PLUGINLIB_EXPORT_CLASS(costmap_2d::ObstacleLayer, costmap_2d::Layer)
// using costmap_2d::NO_INFORMATION;
// using costmap_2d::LETHAL_OBSTACLE;
// using costmap_2d::FREE_SPACE;
// using costmap_2d::ObservationBuffer;
// using costmap_2d::Observation;
// namespace costmap_2d
// {
// void ObstacleLayer::onInitialize()
// {
// ros::NodeHandle nh("~/" + name_), g_nh;
// rolling_window_ = layered_costmap_->isRolling();
// bool track_unknown_space;
// nh.param("track_unknown_space", track_unknown_space, layered_costmap_->isTrackingUnknown());
// if (track_unknown_space)
// default_value_ = NO_INFORMATION;
// else
// default_value_ = FREE_SPACE;
// ObstacleLayer::matchSize();
// current_ = true;
// global_frame_ = layered_costmap_->getGlobalFrameID();
// double transform_tolerance;
// nh.param("transform_tolerance", transform_tolerance, 0.2);
// std::string topics_string;
// // get the topics that we'll subscribe to from the parameter server
// nh.param("observation_sources", topics_string, std::string(""));
// ROS_INFO(" Subscribed to Topics: %s", topics_string.c_str());
// // now we need to split the topics based on whitespace which we can use a stringstream for
// std::stringstream ss(topics_string);
// std::string source;
// while (ss >> source)
// {
// ros::NodeHandle source_node(nh, source);
// // get the parameters for the specific topic
// double observation_keep_time, expected_update_rate, min_obstacle_height, max_obstacle_height;
// std::string topic, sensor_frame, data_type;
// bool inf_is_valid, clearing, marking;
// source_node.param("topic", topic, source);
// source_node.param("sensor_frame", sensor_frame, std::string(""));
// source_node.param("observation_persistence", observation_keep_time, 0.0);
// source_node.param("expected_update_rate", expected_update_rate, 0.0);
// source_node.param("data_type", data_type, std::string("PointCloud"));
// source_node.param("min_obstacle_height", min_obstacle_height, 0.0);
// source_node.param("max_obstacle_height", max_obstacle_height, 2.0);
// source_node.param("inf_is_valid", inf_is_valid, false);
// source_node.param("clearing", clearing, false);
// source_node.param("marking", marking, true);
// if (!(data_type == "PointCloud2" || data_type == "PointCloud" || data_type == "LaserScan"))
// {
// ROS_FATAL("Only topics that use point clouds or laser scans are currently supported");
// throw std::runtime_error("Only topics that use point clouds or laser scans are currently supported");
// }
// std::string raytrace_range_param_name, obstacle_range_param_name;
// // get the obstacle range for the sensor
// double obstacle_range = 2.5;
// if (source_node.searchParam("obstacle_range", obstacle_range_param_name))
// {
// source_node.getParam(obstacle_range_param_name, obstacle_range);
// }
// // get the raytrace range for the sensor
// double raytrace_range = 3.0;
// if (source_node.searchParam("raytrace_range", raytrace_range_param_name))
// {
// source_node.getParam(raytrace_range_param_name, raytrace_range);
// }
// ROS_DEBUG("Creating an observation buffer for source %s, topic %s, frame %s", source.c_str(), topic.c_str(),
// sensor_frame.c_str());
// // create an observation buffer
// observation_buffers_.push_back(
// boost::shared_ptr < ObservationBuffer
// > (new ObservationBuffer(topic, observation_keep_time, expected_update_rate, min_obstacle_height,
// max_obstacle_height, obstacle_range, raytrace_range, *tf_, global_frame_,
// sensor_frame, transform_tolerance)));
// // check if we'll add this buffer to our marking observation buffers
// if (marking)
// marking_buffers_.push_back(observation_buffers_.back());
// // check if we'll also add this buffer to our clearing observation buffers
// if (clearing)
// clearing_buffers_.push_back(observation_buffers_.back());
// ROS_DEBUG(
// "Created an observation buffer for source %s, topic %s, global frame: %s, "
// "expected update rate: %.2f, observation persistence: %.2f",
// source.c_str(), topic.c_str(), global_frame_.c_str(), expected_update_rate, observation_keep_time);
// // create a callback for the topic
// if (data_type == "LaserScan")
// {
// boost::shared_ptr < message_filters::Subscriber<sensor_msgs::LaserScan>
// > sub(new message_filters::Subscriber<sensor_msgs::LaserScan>(g_nh, topic, 50));
// boost::shared_ptr<tf2_ros::MessageFilter<sensor_msgs::LaserScan> > filter(
// new tf2_ros::MessageFilter<sensor_msgs::LaserScan>(*sub, *tf_, global_frame_, 50, g_nh));
// if (inf_is_valid)
// {
// filter->registerCallback([this,buffer=observation_buffers_.back()](auto& msg){ laserScanValidInfCallback(msg, buffer); });
// }
// else
// {
// filter->registerCallback([this,buffer=observation_buffers_.back()](auto& msg){ laserScanCallback(msg, buffer); });
// }
// observation_subscribers_.push_back(sub);
// observation_notifiers_.push_back(filter);
// observation_notifiers_.back()->setTolerance(ros::Duration(0.05));
// }
// else if (data_type == "PointCloud")
// {
// boost::shared_ptr < message_filters::Subscriber<sensor_msgs::PointCloud>
// > sub(new message_filters::Subscriber<sensor_msgs::PointCloud>(g_nh, topic, 50));
// if (inf_is_valid)
// {
// ROS_WARN("obstacle_layer: inf_is_valid option is not applicable to PointCloud observations.");
// }
// boost::shared_ptr < tf2_ros::MessageFilter<sensor_msgs::PointCloud>
// > filter(new tf2_ros::MessageFilter<sensor_msgs::PointCloud>(*sub, *tf_, global_frame_, 50, g_nh));
// filter->registerCallback([this,buffer=observation_buffers_.back()](auto& msg){ pointCloudCallback(msg, buffer); });
// observation_subscribers_.push_back(sub);
// observation_notifiers_.push_back(filter);
// }
// else
// {
// boost::shared_ptr < message_filters::Subscriber<sensor_msgs::PointCloud2>
// > sub(new message_filters::Subscriber<sensor_msgs::PointCloud2>(g_nh, topic, 50));
// if (inf_is_valid)
// {
// ROS_WARN("obstacle_layer: inf_is_valid option is not applicable to PointCloud observations.");
// }
// boost::shared_ptr < tf2_ros::MessageFilter<sensor_msgs::PointCloud2>
// > filter(new tf2_ros::MessageFilter<sensor_msgs::PointCloud2>(*sub, *tf_, global_frame_, 50, g_nh));
// filter->registerCallback([this,buffer=observation_buffers_.back()](auto& msg){ pointCloud2Callback(msg, buffer); });
// observation_subscribers_.push_back(sub);
// observation_notifiers_.push_back(filter);
// }
// if (sensor_frame != "")
// {
// std::vector < std::string > target_frames;
// target_frames.push_back(global_frame_);
// target_frames.push_back(sensor_frame);
// observation_notifiers_.back()->setTargetFrames(target_frames);
// }
// }
// dsrv_ = NULL;
// setupDynamicReconfigure(nh);
// }
// void ObstacleLayer::setupDynamicReconfigure(ros::NodeHandle& nh)
// {
// dsrv_ = new dynamic_reconfigure::Server<costmap_2d::ObstaclePluginConfig>(nh);
// dynamic_reconfigure::Server<costmap_2d::ObstaclePluginConfig>::CallbackType cb =
// [this](auto& config, auto level){ reconfigureCB(config, level); };
// dsrv_->setCallback(cb);
// }
// ObstacleLayer::~ObstacleLayer()
// {
// if (dsrv_)
// delete dsrv_;
// }
// void ObstacleLayer::reconfigureCB(costmap_2d::ObstaclePluginConfig &config, uint32_t level)
// {
// enabled_ = config.enabled;
// footprint_clearing_enabled_ = config.footprint_clearing_enabled;
// max_obstacle_height_ = config.max_obstacle_height;
// combination_method_ = config.combination_method;
// }
// void ObstacleLayer::laserScanCallback(const sensor_msgs::LaserScanConstPtr& message,
// const boost::shared_ptr<ObservationBuffer>& buffer)
// {
// // project the laser into a point cloud
// sensor_msgs::PointCloud2 cloud;
// cloud.header = message->header;
// // project the scan into a point cloud
// try
// {
// projector_.transformLaserScanToPointCloud(message->header.frame_id, *message, cloud, *tf_);
// }
// catch (tf2::TransformException &ex)
// {
// ROS_WARN("High fidelity enabled, but TF returned a transform exception to frame %s: %s", global_frame_.c_str(),
// ex.what());
// projector_.projectLaser(*message, cloud);
// }
// catch (std::runtime_error &ex)
// {
// ROS_WARN("transformLaserScanToPointCloud error, it seems the message from laser sensor is malformed. Ignore this laser scan. what(): %s", ex.what());
// return; //ignore this message
// }
// // buffer the point cloud
// buffer->lock();
// buffer->bufferCloud(cloud);
// buffer->unlock();
// }
// void ObstacleLayer::laserScanValidInfCallback(const sensor_msgs::LaserScanConstPtr& raw_message,
// const boost::shared_ptr<ObservationBuffer>& buffer)
// {
// // Filter positive infinities ("Inf"s) to max_range.
// float epsilon = 0.0001; // a tenth of a millimeter
// sensor_msgs::LaserScan message = *raw_message;
// for (size_t i = 0; i < message.ranges.size(); i++)
// {
// float range = message.ranges[ i ];
// if (!std::isfinite(range) && range > 0)
// {
// message.ranges[ i ] = message.range_max - epsilon;
// }
// }
// // project the laser into a point cloud
// sensor_msgs::PointCloud2 cloud;
// cloud.header = message.header;
// // project the scan into a point cloud
// try
// {
// projector_.transformLaserScanToPointCloud(message.header.frame_id, message, cloud, *tf_);
// }
// catch (tf2::TransformException &ex)
// {
// ROS_WARN("High fidelity enabled, but TF returned a transform exception to frame %s: %s",
// global_frame_.c_str(), ex.what());
// projector_.projectLaser(message, cloud);
// }
// catch (std::runtime_error &ex)
// {
// ROS_WARN("transformLaserScanToPointCloud error, it seems the message from laser sensor is malformed. Ignore this laser scan. what(): %s", ex.what());
// return; //ignore this message
// }
// // buffer the point cloud
// buffer->lock();
// buffer->bufferCloud(cloud);
// buffer->unlock();
// }
// void ObstacleLayer::pointCloudCallback(const sensor_msgs::PointCloudConstPtr& message,
// const boost::shared_ptr<ObservationBuffer>& buffer)
// {
// sensor_msgs::PointCloud2 cloud2;
// if (!sensor_msgs::convertPointCloudToPointCloud2(*message, cloud2))
// {
// ROS_ERROR("Failed to convert a PointCloud to a PointCloud2, dropping message");
// return;
// }
// // buffer the point cloud
// buffer->lock();
// buffer->bufferCloud(cloud2);
// buffer->unlock();
// }
// void ObstacleLayer::pointCloud2Callback(const sensor_msgs::PointCloud2ConstPtr& message,
// const boost::shared_ptr<ObservationBuffer>& buffer)
// {
// // buffer the point cloud
// buffer->lock();
// buffer->bufferCloud(*message);
// buffer->unlock();
// }
// void ObstacleLayer::updateBounds(double robot_x, double robot_y, double robot_yaw, double* min_x,
// double* min_y, double* max_x, double* max_y)
// {
// if (rolling_window_)
// updateOrigin(robot_x - getSizeInMetersX() / 2, robot_y - getSizeInMetersY() / 2);
// useExtraBounds(min_x, min_y, max_x, max_y);
// bool current = true;
// std::vector<Observation> observations, clearing_observations;
// // get the marking observations
// current = current && getMarkingObservations(observations);
// // get the clearing observations
// current = current && getClearingObservations(clearing_observations);
// // update the global current status
// current_ = current;
// // raytrace freespace
// for (unsigned int i = 0; i < clearing_observations.size(); ++i)
// {
// raytraceFreespace(clearing_observations[i], min_x, min_y, max_x, max_y);
// }
// // place the new obstacles into a priority queue... each with a priority of zero to begin with
// for (std::vector<Observation>::const_iterator it = observations.begin(); it != observations.end(); ++it)
// {
// const Observation& obs = *it;
// const sensor_msgs::PointCloud2& cloud = *(obs.cloud_);
// double sq_obstacle_range = obs.obstacle_range_ * obs.obstacle_range_;
// sensor_msgs::PointCloud2ConstIterator<float> iter_x(cloud, "x");
// sensor_msgs::PointCloud2ConstIterator<float> iter_y(cloud, "y");
// sensor_msgs::PointCloud2ConstIterator<float> iter_z(cloud, "z");
// for (; iter_x !=iter_x.end(); ++iter_x, ++iter_y, ++iter_z)
// {
// double px = *iter_x, py = *iter_y, pz = *iter_z;
// // if the obstacle is too high or too far away from the robot we won't add it
// if (pz > max_obstacle_height_)
// {
// ROS_DEBUG("The point is too high");
// continue;
// }
// // compute the squared distance from the hitpoint to the pointcloud's origin
// double sq_dist = (px - obs.origin_.x) * (px - obs.origin_.x) + (py - obs.origin_.y) * (py - obs.origin_.y)
// + (pz - obs.origin_.z) * (pz - obs.origin_.z);
// // if the point is far enough away... we won't consider it
// if (sq_dist >= sq_obstacle_range)
// {
// ROS_DEBUG("The point is too far away");
// continue;
// }
// // now we need to compute the map coordinates for the observation
// unsigned int mx, my;
// if (!worldToMap(px, py, mx, my))
// {
// ROS_DEBUG("Computing map coords failed");
// continue;
// }
// unsigned int index = getIndex(mx, my);
// costmap_[index] = LETHAL_OBSTACLE;
// touch(px, py, min_x, min_y, max_x, max_y);
// }
// }
// updateFootprint(robot_x, robot_y, robot_yaw, min_x, min_y, max_x, max_y);
// }
// void ObstacleLayer::updateFootprint(double robot_x, double robot_y, double robot_yaw, double* min_x, double* min_y,
// double* max_x, double* max_y)
// {
// if (!footprint_clearing_enabled_) return;
// transformFootprint(robot_x, robot_y, robot_yaw, getFootprint(), transformed_footprint_);
// for (unsigned int i = 0; i < transformed_footprint_.size(); i++)
// {
// touch(transformed_footprint_[i].x, transformed_footprint_[i].y, min_x, min_y, max_x, max_y);
// }
// }
// void ObstacleLayer::updateCosts(costmap_2d::Costmap2D& master_grid, int min_i, int min_j, int max_i, int max_j)
// {
// if (footprint_clearing_enabled_)
// {
// setConvexPolygonCost(transformed_footprint_, costmap_2d::FREE_SPACE);
// }
// switch (combination_method_)
// {
// case 0: // Overwrite
// updateWithOverwrite(master_grid, min_i, min_j, max_i, max_j);
// break;
// case 1: // Maximum
// updateWithMax(master_grid, min_i, min_j, max_i, max_j);
// break;
// default: // Nothing
// break;
// }
// }
// void ObstacleLayer::addStaticObservation(costmap_2d::Observation& obs, bool marking, bool clearing)
// {
// if (marking)
// static_marking_observations_.push_back(obs);
// if (clearing)
// static_clearing_observations_.push_back(obs);
// }
// void ObstacleLayer::clearStaticObservations(bool marking, bool clearing)
// {
// if (marking)
// static_marking_observations_.clear();
// if (clearing)
// static_clearing_observations_.clear();
// }
// bool ObstacleLayer::getMarkingObservations(std::vector<Observation>& marking_observations) const
// {
// bool current = true;
// // get the marking observations
// for (unsigned int i = 0; i < marking_buffers_.size(); ++i)
// {
// marking_buffers_[i]->lock();
// marking_buffers_[i]->getObservations(marking_observations);
// current = marking_buffers_[i]->isCurrent() && current;
// marking_buffers_[i]->unlock();
// }
// marking_observations.insert(marking_observations.end(),
// static_marking_observations_.begin(), static_marking_observations_.end());
// return current;
// }
// bool ObstacleLayer::getClearingObservations(std::vector<Observation>& clearing_observations) const
// {
// bool current = true;
// // get the clearing observations
// for (unsigned int i = 0; i < clearing_buffers_.size(); ++i)
// {
// clearing_buffers_[i]->lock();
// clearing_buffers_[i]->getObservations(clearing_observations);
// current = clearing_buffers_[i]->isCurrent() && current;
// clearing_buffers_[i]->unlock();
// }
// clearing_observations.insert(clearing_observations.end(),
// static_clearing_observations_.begin(), static_clearing_observations_.end());
// return current;
// }
// void ObstacleLayer::raytraceFreespace(const Observation& clearing_observation, double* min_x, double* min_y,
// double* max_x, double* max_y)
// {
// double ox = clearing_observation.origin_.x;
// double oy = clearing_observation.origin_.y;
// const sensor_msgs::PointCloud2 &cloud = *(clearing_observation.cloud_);
// // get the map coordinates of the origin of the sensor
// unsigned int x0, y0;
// if (!worldToMap(ox, oy, x0, y0))
// {
// ROS_WARN_THROTTLE(
// 1.0, "The origin for the sensor at (%.2f, %.2f) is out of map bounds. So, the costmap cannot raytrace for it.",
// ox, oy);
// return;
// }
// // we can pre-compute the enpoints of the map outside of the inner loop... we'll need these later
// double origin_x = origin_x_, origin_y = origin_y_;
// double map_end_x = origin_x + size_x_ * resolution_;
// double map_end_y = origin_y + size_y_ * resolution_;
// touch(ox, oy, min_x, min_y, max_x, max_y);
// // for each point in the cloud, we want to trace a line from the origin and clear obstacles along it
// sensor_msgs::PointCloud2ConstIterator<float> iter_x(cloud, "x");
// sensor_msgs::PointCloud2ConstIterator<float> iter_y(cloud, "y");
// for (; iter_x != iter_x.end(); ++iter_x, ++iter_y)
// {
// double wx = *iter_x;
// double wy = *iter_y;
// // now we also need to make sure that the enpoint we're raytracing
// // to isn't off the costmap and scale if necessary
// double a = wx - ox;
// double b = wy - oy;
// // the minimum value to raytrace from is the origin
// if (wx < origin_x)
// {
// double t = (origin_x - ox) / a;
// wx = origin_x;
// wy = oy + b * t;
// }
// if (wy < origin_y)
// {
// double t = (origin_y - oy) / b;
// wx = ox + a * t;
// wy = origin_y;
// }
// // the maximum value to raytrace to is the end of the map
// if (wx > map_end_x)
// {
// double t = (map_end_x - ox) / a;
// wx = map_end_x - .001;
// wy = oy + b * t;
// }
// if (wy > map_end_y)
// {
// double t = (map_end_y - oy) / b;
// wx = ox + a * t;
// wy = map_end_y - .001;
// }
// // now that the vector is scaled correctly... we'll get the map coordinates of its endpoint
// unsigned int x1, y1;
// // check for legality just in case
// if (!worldToMap(wx, wy, x1, y1))
// continue;
// unsigned int cell_raytrace_range = cellDistance(clearing_observation.raytrace_range_);
// MarkCell marker(costmap_, FREE_SPACE);
// // and finally... we can execute our trace to clear obstacles along that line
// raytraceLine(marker, x0, y0, x1, y1, cell_raytrace_range);
// updateRaytraceBounds(ox, oy, wx, wy, clearing_observation.raytrace_range_, min_x, min_y, max_x, max_y);
// }
// }
// void ObstacleLayer::activate()
// {
// // if we're stopped we need to re-subscribe to topics
// for (unsigned int i = 0; i < observation_subscribers_.size(); ++i)
// {
// if (observation_subscribers_[i] != NULL)
// observation_subscribers_[i]->subscribe();
// }
// for (unsigned int i = 0; i < observation_buffers_.size(); ++i)
// {
// if (observation_buffers_[i])
// observation_buffers_[i]->resetLastUpdated();
// }
// }
// void ObstacleLayer::deactivate()
// {
// for (unsigned int i = 0; i < observation_subscribers_.size(); ++i)
// {
// if (observation_subscribers_[i] != NULL)
// observation_subscribers_[i]->unsubscribe();
// }
// }
// void ObstacleLayer::updateRaytraceBounds(double ox, double oy, double wx, double wy, double range,
// double* min_x, double* min_y, double* max_x, double* max_y)
// {
// double dx = wx-ox, dy = wy-oy;
// double full_distance = hypot(dx, dy);
// double scale = std::min(1.0, range / full_distance);
// double ex = ox + dx * scale, ey = oy + dy * scale;
// touch(ex, ey, min_x, min_y, max_x, max_y);
// }
// void ObstacleLayer::reset()
// {
// deactivate();
// resetMaps();
// current_ = true;
// activate();
// }
// } // namespace costmap_2d