624 lines
22 KiB
C++
624 lines
22 KiB
C++
/*********************************************************************
|
|
*
|
|
* Software License Agreement (BSD License)
|
|
*
|
|
* Copyright (c) 2008, 2013, Willow Garage, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials provided
|
|
* with the distribution.
|
|
* * Neither the name of Willow Garage, Inc. nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* Author: Eitan Marder-Eppstein
|
|
* David V. Lu!!
|
|
*********************************************************************/
|
|
#include <costmap_2d/obstacle_layer.h>
|
|
#include <costmap_2d/costmap_math.h>
|
|
#include <tf2_ros/message_filter.h>
|
|
|
|
#include <pluginlib/class_list_macros.hpp>
|
|
#include <sensor_msgs/point_cloud2_iterator.h>
|
|
|
|
PLUGINLIB_EXPORT_CLASS(costmap_2d::ObstacleLayer, costmap_2d::Layer)
|
|
|
|
using costmap_2d::NO_INFORMATION;
|
|
using costmap_2d::LETHAL_OBSTACLE;
|
|
using costmap_2d::FREE_SPACE;
|
|
|
|
using costmap_2d::ObservationBuffer;
|
|
using costmap_2d::Observation;
|
|
|
|
namespace costmap_2d
|
|
{
|
|
|
|
void ObstacleLayer::onInitialize()
|
|
{
|
|
ros::NodeHandle nh("~/" + name_), g_nh;
|
|
rolling_window_ = layered_costmap_->isRolling();
|
|
|
|
bool track_unknown_space;
|
|
nh.param("track_unknown_space", track_unknown_space, layered_costmap_->isTrackingUnknown());
|
|
if (track_unknown_space)
|
|
default_value_ = NO_INFORMATION;
|
|
else
|
|
default_value_ = FREE_SPACE;
|
|
|
|
ObstacleLayer::matchSize();
|
|
current_ = true;
|
|
|
|
global_frame_ = layered_costmap_->getGlobalFrameID();
|
|
double transform_tolerance;
|
|
nh.param("transform_tolerance", transform_tolerance, 0.2);
|
|
|
|
std::string topics_string;
|
|
// get the topics that we'll subscribe to from the parameter server
|
|
nh.param("observation_sources", topics_string, std::string(""));
|
|
ROS_INFO(" Subscribed to Topics: %s", topics_string.c_str());
|
|
|
|
// now we need to split the topics based on whitespace which we can use a stringstream for
|
|
std::stringstream ss(topics_string);
|
|
|
|
std::string source;
|
|
while (ss >> source)
|
|
{
|
|
ros::NodeHandle source_node(nh, source);
|
|
|
|
// get the parameters for the specific topic
|
|
double observation_keep_time, expected_update_rate, min_obstacle_height, max_obstacle_height;
|
|
std::string topic, sensor_frame, data_type;
|
|
bool inf_is_valid, clearing, marking;
|
|
|
|
source_node.param("topic", topic, source);
|
|
source_node.param("sensor_frame", sensor_frame, std::string(""));
|
|
source_node.param("observation_persistence", observation_keep_time, 0.0);
|
|
source_node.param("expected_update_rate", expected_update_rate, 0.0);
|
|
source_node.param("data_type", data_type, std::string("PointCloud"));
|
|
source_node.param("min_obstacle_height", min_obstacle_height, 0.0);
|
|
source_node.param("max_obstacle_height", max_obstacle_height, 2.0);
|
|
source_node.param("inf_is_valid", inf_is_valid, false);
|
|
source_node.param("clearing", clearing, false);
|
|
source_node.param("marking", marking, true);
|
|
|
|
if (!(data_type == "PointCloud2" || data_type == "PointCloud" || data_type == "LaserScan"))
|
|
{
|
|
ROS_FATAL("Only topics that use point clouds or laser scans are currently supported");
|
|
throw std::runtime_error("Only topics that use point clouds or laser scans are currently supported");
|
|
}
|
|
|
|
std::string raytrace_range_param_name, obstacle_range_param_name;
|
|
|
|
// get the obstacle range for the sensor
|
|
double obstacle_range = 2.5;
|
|
if (source_node.searchParam("obstacle_range", obstacle_range_param_name))
|
|
{
|
|
source_node.getParam(obstacle_range_param_name, obstacle_range);
|
|
}
|
|
|
|
// get the raytrace range for the sensor
|
|
double raytrace_range = 3.0;
|
|
if (source_node.searchParam("raytrace_range", raytrace_range_param_name))
|
|
{
|
|
source_node.getParam(raytrace_range_param_name, raytrace_range);
|
|
}
|
|
|
|
ROS_DEBUG("Creating an observation buffer for source %s, topic %s, frame %s", source.c_str(), topic.c_str(),
|
|
sensor_frame.c_str());
|
|
|
|
// create an observation buffer
|
|
observation_buffers_.push_back(
|
|
boost::shared_ptr < ObservationBuffer
|
|
> (new ObservationBuffer(topic, observation_keep_time, expected_update_rate, min_obstacle_height,
|
|
max_obstacle_height, obstacle_range, raytrace_range, *tf_, global_frame_,
|
|
sensor_frame, transform_tolerance)));
|
|
|
|
// check if we'll add this buffer to our marking observation buffers
|
|
if (marking)
|
|
marking_buffers_.push_back(observation_buffers_.back());
|
|
|
|
// check if we'll also add this buffer to our clearing observation buffers
|
|
if (clearing)
|
|
clearing_buffers_.push_back(observation_buffers_.back());
|
|
|
|
ROS_DEBUG(
|
|
"Created an observation buffer for source %s, topic %s, global frame: %s, "
|
|
"expected update rate: %.2f, observation persistence: %.2f",
|
|
source.c_str(), topic.c_str(), global_frame_.c_str(), expected_update_rate, observation_keep_time);
|
|
|
|
// create a callback for the topic
|
|
if (data_type == "LaserScan")
|
|
{
|
|
boost::shared_ptr < message_filters::Subscriber<sensor_msgs::LaserScan>
|
|
> sub(new message_filters::Subscriber<sensor_msgs::LaserScan>(g_nh, topic, 50));
|
|
|
|
boost::shared_ptr<tf2_ros::MessageFilter<sensor_msgs::LaserScan> > filter(
|
|
new tf2_ros::MessageFilter<sensor_msgs::LaserScan>(*sub, *tf_, global_frame_, 50, g_nh));
|
|
|
|
if (inf_is_valid)
|
|
{
|
|
filter->registerCallback([this,buffer=observation_buffers_.back()](auto& msg){ laserScanValidInfCallback(msg, buffer); });
|
|
}
|
|
else
|
|
{
|
|
filter->registerCallback([this,buffer=observation_buffers_.back()](auto& msg){ laserScanCallback(msg, buffer); });
|
|
}
|
|
|
|
observation_subscribers_.push_back(sub);
|
|
observation_notifiers_.push_back(filter);
|
|
|
|
observation_notifiers_.back()->setTolerance(ros::Duration(0.05));
|
|
}
|
|
else if (data_type == "PointCloud")
|
|
{
|
|
boost::shared_ptr < message_filters::Subscriber<sensor_msgs::PointCloud>
|
|
> sub(new message_filters::Subscriber<sensor_msgs::PointCloud>(g_nh, topic, 50));
|
|
|
|
if (inf_is_valid)
|
|
{
|
|
ROS_WARN("obstacle_layer: inf_is_valid option is not applicable to PointCloud observations.");
|
|
}
|
|
|
|
boost::shared_ptr < tf2_ros::MessageFilter<sensor_msgs::PointCloud>
|
|
> filter(new tf2_ros::MessageFilter<sensor_msgs::PointCloud>(*sub, *tf_, global_frame_, 50, g_nh));
|
|
filter->registerCallback([this,buffer=observation_buffers_.back()](auto& msg){ pointCloudCallback(msg, buffer); });
|
|
|
|
observation_subscribers_.push_back(sub);
|
|
observation_notifiers_.push_back(filter);
|
|
}
|
|
else
|
|
{
|
|
boost::shared_ptr < message_filters::Subscriber<sensor_msgs::PointCloud2>
|
|
> sub(new message_filters::Subscriber<sensor_msgs::PointCloud2>(g_nh, topic, 50));
|
|
|
|
if (inf_is_valid)
|
|
{
|
|
ROS_WARN("obstacle_layer: inf_is_valid option is not applicable to PointCloud observations.");
|
|
}
|
|
|
|
boost::shared_ptr < tf2_ros::MessageFilter<sensor_msgs::PointCloud2>
|
|
> filter(new tf2_ros::MessageFilter<sensor_msgs::PointCloud2>(*sub, *tf_, global_frame_, 50, g_nh));
|
|
filter->registerCallback([this,buffer=observation_buffers_.back()](auto& msg){ pointCloud2Callback(msg, buffer); });
|
|
|
|
observation_subscribers_.push_back(sub);
|
|
observation_notifiers_.push_back(filter);
|
|
}
|
|
|
|
if (sensor_frame != "")
|
|
{
|
|
std::vector < std::string > target_frames;
|
|
target_frames.push_back(global_frame_);
|
|
target_frames.push_back(sensor_frame);
|
|
observation_notifiers_.back()->setTargetFrames(target_frames);
|
|
}
|
|
}
|
|
|
|
dsrv_ = NULL;
|
|
setupDynamicReconfigure(nh);
|
|
}
|
|
|
|
void ObstacleLayer::setupDynamicReconfigure(ros::NodeHandle& nh)
|
|
{
|
|
dsrv_ = new dynamic_reconfigure::Server<costmap_2d::ObstaclePluginConfig>(nh);
|
|
dynamic_reconfigure::Server<costmap_2d::ObstaclePluginConfig>::CallbackType cb =
|
|
[this](auto& config, auto level){ reconfigureCB(config, level); };
|
|
dsrv_->setCallback(cb);
|
|
}
|
|
|
|
ObstacleLayer::~ObstacleLayer()
|
|
{
|
|
if (dsrv_)
|
|
delete dsrv_;
|
|
}
|
|
void ObstacleLayer::reconfigureCB(costmap_2d::ObstaclePluginConfig &config, uint32_t level)
|
|
{
|
|
enabled_ = config.enabled;
|
|
footprint_clearing_enabled_ = config.footprint_clearing_enabled;
|
|
max_obstacle_height_ = config.max_obstacle_height;
|
|
combination_method_ = config.combination_method;
|
|
}
|
|
|
|
void ObstacleLayer::laserScanCallback(const sensor_msgs::LaserScanConstPtr& message,
|
|
const boost::shared_ptr<ObservationBuffer>& buffer)
|
|
{
|
|
// project the laser into a point cloud
|
|
sensor_msgs::PointCloud2 cloud;
|
|
cloud.header = message->header;
|
|
|
|
// project the scan into a point cloud
|
|
try
|
|
{
|
|
projector_.transformLaserScanToPointCloud(message->header.frame_id, *message, cloud, *tf_);
|
|
}
|
|
catch (tf2::TransformException &ex)
|
|
{
|
|
ROS_WARN("High fidelity enabled, but TF returned a transform exception to frame %s: %s", global_frame_.c_str(),
|
|
ex.what());
|
|
projector_.projectLaser(*message, cloud);
|
|
}
|
|
catch (std::runtime_error &ex)
|
|
{
|
|
ROS_WARN("transformLaserScanToPointCloud error, it seems the message from laser sensor is malformed. Ignore this laser scan. what(): %s", ex.what());
|
|
return; //ignore this message
|
|
}
|
|
|
|
// buffer the point cloud
|
|
buffer->lock();
|
|
buffer->bufferCloud(cloud);
|
|
buffer->unlock();
|
|
}
|
|
|
|
void ObstacleLayer::laserScanValidInfCallback(const sensor_msgs::LaserScanConstPtr& raw_message,
|
|
const boost::shared_ptr<ObservationBuffer>& buffer)
|
|
{
|
|
// Filter positive infinities ("Inf"s) to max_range.
|
|
float epsilon = 0.0001; // a tenth of a millimeter
|
|
sensor_msgs::LaserScan message = *raw_message;
|
|
for (size_t i = 0; i < message.ranges.size(); i++)
|
|
{
|
|
float range = message.ranges[ i ];
|
|
if (!std::isfinite(range) && range > 0)
|
|
{
|
|
message.ranges[ i ] = message.range_max - epsilon;
|
|
}
|
|
}
|
|
|
|
// project the laser into a point cloud
|
|
sensor_msgs::PointCloud2 cloud;
|
|
cloud.header = message.header;
|
|
|
|
// project the scan into a point cloud
|
|
try
|
|
{
|
|
projector_.transformLaserScanToPointCloud(message.header.frame_id, message, cloud, *tf_);
|
|
}
|
|
catch (tf2::TransformException &ex)
|
|
{
|
|
ROS_WARN("High fidelity enabled, but TF returned a transform exception to frame %s: %s",
|
|
global_frame_.c_str(), ex.what());
|
|
projector_.projectLaser(message, cloud);
|
|
}
|
|
catch (std::runtime_error &ex)
|
|
{
|
|
ROS_WARN("transformLaserScanToPointCloud error, it seems the message from laser sensor is malformed. Ignore this laser scan. what(): %s", ex.what());
|
|
return; //ignore this message
|
|
}
|
|
|
|
// buffer the point cloud
|
|
buffer->lock();
|
|
buffer->bufferCloud(cloud);
|
|
buffer->unlock();
|
|
}
|
|
|
|
void ObstacleLayer::pointCloudCallback(const sensor_msgs::PointCloudConstPtr& message,
|
|
const boost::shared_ptr<ObservationBuffer>& buffer)
|
|
{
|
|
sensor_msgs::PointCloud2 cloud2;
|
|
|
|
if (!sensor_msgs::convertPointCloudToPointCloud2(*message, cloud2))
|
|
{
|
|
ROS_ERROR("Failed to convert a PointCloud to a PointCloud2, dropping message");
|
|
return;
|
|
}
|
|
|
|
// buffer the point cloud
|
|
buffer->lock();
|
|
buffer->bufferCloud(cloud2);
|
|
buffer->unlock();
|
|
}
|
|
|
|
void ObstacleLayer::pointCloud2Callback(const sensor_msgs::PointCloud2ConstPtr& message,
|
|
const boost::shared_ptr<ObservationBuffer>& buffer)
|
|
{
|
|
// buffer the point cloud
|
|
buffer->lock();
|
|
buffer->bufferCloud(*message);
|
|
buffer->unlock();
|
|
}
|
|
|
|
void ObstacleLayer::updateBounds(double robot_x, double robot_y, double robot_yaw, double* min_x,
|
|
double* min_y, double* max_x, double* max_y)
|
|
{
|
|
if (rolling_window_)
|
|
updateOrigin(robot_x - getSizeInMetersX() / 2, robot_y - getSizeInMetersY() / 2);
|
|
useExtraBounds(min_x, min_y, max_x, max_y);
|
|
|
|
bool current = true;
|
|
std::vector<Observation> observations, clearing_observations;
|
|
|
|
// get the marking observations
|
|
current = current && getMarkingObservations(observations);
|
|
|
|
// get the clearing observations
|
|
current = current && getClearingObservations(clearing_observations);
|
|
|
|
// update the global current status
|
|
current_ = current;
|
|
|
|
// raytrace freespace
|
|
for (unsigned int i = 0; i < clearing_observations.size(); ++i)
|
|
{
|
|
raytraceFreespace(clearing_observations[i], min_x, min_y, max_x, max_y);
|
|
}
|
|
|
|
// place the new obstacles into a priority queue... each with a priority of zero to begin with
|
|
for (std::vector<Observation>::const_iterator it = observations.begin(); it != observations.end(); ++it)
|
|
{
|
|
const Observation& obs = *it;
|
|
|
|
const sensor_msgs::PointCloud2& cloud = *(obs.cloud_);
|
|
|
|
double sq_obstacle_range = obs.obstacle_range_ * obs.obstacle_range_;
|
|
|
|
sensor_msgs::PointCloud2ConstIterator<float> iter_x(cloud, "x");
|
|
sensor_msgs::PointCloud2ConstIterator<float> iter_y(cloud, "y");
|
|
sensor_msgs::PointCloud2ConstIterator<float> iter_z(cloud, "z");
|
|
|
|
for (; iter_x !=iter_x.end(); ++iter_x, ++iter_y, ++iter_z)
|
|
{
|
|
double px = *iter_x, py = *iter_y, pz = *iter_z;
|
|
|
|
// if the obstacle is too high or too far away from the robot we won't add it
|
|
if (pz > max_obstacle_height_)
|
|
{
|
|
ROS_DEBUG("The point is too high");
|
|
continue;
|
|
}
|
|
|
|
// compute the squared distance from the hitpoint to the pointcloud's origin
|
|
double sq_dist = (px - obs.origin_.x) * (px - obs.origin_.x) + (py - obs.origin_.y) * (py - obs.origin_.y)
|
|
+ (pz - obs.origin_.z) * (pz - obs.origin_.z);
|
|
|
|
// if the point is far enough away... we won't consider it
|
|
if (sq_dist >= sq_obstacle_range)
|
|
{
|
|
ROS_DEBUG("The point is too far away");
|
|
continue;
|
|
}
|
|
|
|
// now we need to compute the map coordinates for the observation
|
|
unsigned int mx, my;
|
|
if (!worldToMap(px, py, mx, my))
|
|
{
|
|
ROS_DEBUG("Computing map coords failed");
|
|
continue;
|
|
}
|
|
|
|
unsigned int index = getIndex(mx, my);
|
|
costmap_[index] = LETHAL_OBSTACLE;
|
|
touch(px, py, min_x, min_y, max_x, max_y);
|
|
}
|
|
}
|
|
|
|
updateFootprint(robot_x, robot_y, robot_yaw, min_x, min_y, max_x, max_y);
|
|
}
|
|
|
|
void ObstacleLayer::updateFootprint(double robot_x, double robot_y, double robot_yaw, double* min_x, double* min_y,
|
|
double* max_x, double* max_y)
|
|
{
|
|
if (!footprint_clearing_enabled_) return;
|
|
transformFootprint(robot_x, robot_y, robot_yaw, getFootprint(), transformed_footprint_);
|
|
|
|
for (unsigned int i = 0; i < transformed_footprint_.size(); i++)
|
|
{
|
|
touch(transformed_footprint_[i].x, transformed_footprint_[i].y, min_x, min_y, max_x, max_y);
|
|
}
|
|
}
|
|
|
|
void ObstacleLayer::updateCosts(costmap_2d::Costmap2D& master_grid, int min_i, int min_j, int max_i, int max_j)
|
|
{
|
|
if (footprint_clearing_enabled_)
|
|
{
|
|
setConvexPolygonCost(transformed_footprint_, costmap_2d::FREE_SPACE);
|
|
}
|
|
|
|
switch (combination_method_)
|
|
{
|
|
case 0: // Overwrite
|
|
updateWithOverwrite(master_grid, min_i, min_j, max_i, max_j);
|
|
break;
|
|
case 1: // Maximum
|
|
updateWithMax(master_grid, min_i, min_j, max_i, max_j);
|
|
break;
|
|
default: // Nothing
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
void ObstacleLayer::addStaticObservation(costmap_2d::Observation& obs, bool marking, bool clearing)
|
|
{
|
|
if (marking)
|
|
static_marking_observations_.push_back(obs);
|
|
if (clearing)
|
|
static_clearing_observations_.push_back(obs);
|
|
}
|
|
|
|
void ObstacleLayer::clearStaticObservations(bool marking, bool clearing)
|
|
{
|
|
if (marking)
|
|
static_marking_observations_.clear();
|
|
if (clearing)
|
|
static_clearing_observations_.clear();
|
|
}
|
|
|
|
bool ObstacleLayer::getMarkingObservations(std::vector<Observation>& marking_observations) const
|
|
{
|
|
bool current = true;
|
|
// get the marking observations
|
|
for (unsigned int i = 0; i < marking_buffers_.size(); ++i)
|
|
{
|
|
marking_buffers_[i]->lock();
|
|
marking_buffers_[i]->getObservations(marking_observations);
|
|
current = marking_buffers_[i]->isCurrent() && current;
|
|
marking_buffers_[i]->unlock();
|
|
}
|
|
marking_observations.insert(marking_observations.end(),
|
|
static_marking_observations_.begin(), static_marking_observations_.end());
|
|
return current;
|
|
}
|
|
|
|
bool ObstacleLayer::getClearingObservations(std::vector<Observation>& clearing_observations) const
|
|
{
|
|
bool current = true;
|
|
// get the clearing observations
|
|
for (unsigned int i = 0; i < clearing_buffers_.size(); ++i)
|
|
{
|
|
clearing_buffers_[i]->lock();
|
|
clearing_buffers_[i]->getObservations(clearing_observations);
|
|
current = clearing_buffers_[i]->isCurrent() && current;
|
|
clearing_buffers_[i]->unlock();
|
|
}
|
|
clearing_observations.insert(clearing_observations.end(),
|
|
static_clearing_observations_.begin(), static_clearing_observations_.end());
|
|
return current;
|
|
}
|
|
|
|
void ObstacleLayer::raytraceFreespace(const Observation& clearing_observation, double* min_x, double* min_y,
|
|
double* max_x, double* max_y)
|
|
{
|
|
double ox = clearing_observation.origin_.x;
|
|
double oy = clearing_observation.origin_.y;
|
|
const sensor_msgs::PointCloud2 &cloud = *(clearing_observation.cloud_);
|
|
|
|
// get the map coordinates of the origin of the sensor
|
|
unsigned int x0, y0;
|
|
if (!worldToMap(ox, oy, x0, y0))
|
|
{
|
|
ROS_WARN_THROTTLE(
|
|
1.0, "The origin for the sensor at (%.2f, %.2f) is out of map bounds. So, the costmap cannot raytrace for it.",
|
|
ox, oy);
|
|
return;
|
|
}
|
|
|
|
// we can pre-compute the enpoints of the map outside of the inner loop... we'll need these later
|
|
double origin_x = origin_x_, origin_y = origin_y_;
|
|
double map_end_x = origin_x + size_x_ * resolution_;
|
|
double map_end_y = origin_y + size_y_ * resolution_;
|
|
|
|
|
|
touch(ox, oy, min_x, min_y, max_x, max_y);
|
|
|
|
// for each point in the cloud, we want to trace a line from the origin and clear obstacles along it
|
|
sensor_msgs::PointCloud2ConstIterator<float> iter_x(cloud, "x");
|
|
sensor_msgs::PointCloud2ConstIterator<float> iter_y(cloud, "y");
|
|
|
|
for (; iter_x != iter_x.end(); ++iter_x, ++iter_y)
|
|
{
|
|
double wx = *iter_x;
|
|
double wy = *iter_y;
|
|
|
|
// now we also need to make sure that the enpoint we're raytracing
|
|
// to isn't off the costmap and scale if necessary
|
|
double a = wx - ox;
|
|
double b = wy - oy;
|
|
|
|
// the minimum value to raytrace from is the origin
|
|
if (wx < origin_x)
|
|
{
|
|
double t = (origin_x - ox) / a;
|
|
wx = origin_x;
|
|
wy = oy + b * t;
|
|
}
|
|
if (wy < origin_y)
|
|
{
|
|
double t = (origin_y - oy) / b;
|
|
wx = ox + a * t;
|
|
wy = origin_y;
|
|
}
|
|
|
|
// the maximum value to raytrace to is the end of the map
|
|
if (wx > map_end_x)
|
|
{
|
|
double t = (map_end_x - ox) / a;
|
|
wx = map_end_x - .001;
|
|
wy = oy + b * t;
|
|
}
|
|
if (wy > map_end_y)
|
|
{
|
|
double t = (map_end_y - oy) / b;
|
|
wx = ox + a * t;
|
|
wy = map_end_y - .001;
|
|
}
|
|
|
|
// now that the vector is scaled correctly... we'll get the map coordinates of its endpoint
|
|
unsigned int x1, y1;
|
|
|
|
// check for legality just in case
|
|
if (!worldToMap(wx, wy, x1, y1))
|
|
continue;
|
|
|
|
unsigned int cell_raytrace_range = cellDistance(clearing_observation.raytrace_range_);
|
|
MarkCell marker(costmap_, FREE_SPACE);
|
|
// and finally... we can execute our trace to clear obstacles along that line
|
|
raytraceLine(marker, x0, y0, x1, y1, cell_raytrace_range);
|
|
|
|
updateRaytraceBounds(ox, oy, wx, wy, clearing_observation.raytrace_range_, min_x, min_y, max_x, max_y);
|
|
}
|
|
}
|
|
|
|
void ObstacleLayer::activate()
|
|
{
|
|
// if we're stopped we need to re-subscribe to topics
|
|
for (unsigned int i = 0; i < observation_subscribers_.size(); ++i)
|
|
{
|
|
if (observation_subscribers_[i] != NULL)
|
|
observation_subscribers_[i]->subscribe();
|
|
}
|
|
|
|
for (unsigned int i = 0; i < observation_buffers_.size(); ++i)
|
|
{
|
|
if (observation_buffers_[i])
|
|
observation_buffers_[i]->resetLastUpdated();
|
|
}
|
|
}
|
|
void ObstacleLayer::deactivate()
|
|
{
|
|
for (unsigned int i = 0; i < observation_subscribers_.size(); ++i)
|
|
{
|
|
if (observation_subscribers_[i] != NULL)
|
|
observation_subscribers_[i]->unsubscribe();
|
|
}
|
|
}
|
|
|
|
void ObstacleLayer::updateRaytraceBounds(double ox, double oy, double wx, double wy, double range,
|
|
double* min_x, double* min_y, double* max_x, double* max_y)
|
|
{
|
|
double dx = wx-ox, dy = wy-oy;
|
|
double full_distance = hypot(dx, dy);
|
|
double scale = std::min(1.0, range / full_distance);
|
|
double ex = ox + dx * scale, ey = oy + dy * scale;
|
|
touch(ex, ey, min_x, min_y, max_x, max_y);
|
|
}
|
|
|
|
void ObstacleLayer::reset()
|
|
{
|
|
deactivate();
|
|
resetMaps();
|
|
current_ = true;
|
|
activate();
|
|
}
|
|
|
|
} // namespace costmap_2d
|