costmap_2d/plugins/voxel_layer.cpp

456 lines
17 KiB
C++

/*********************************************************************
*
* Software License Agreement (BSD License)
*
* Copyright (c) 2008, 2013, Willow Garage, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Willow Garage, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Author: Eitan Marder-Eppstein
* David V. Lu!!
*********************************************************************/
#include <costmap_2d/voxel_layer.h>
#include <costmap_2d/utils.h>
#include <boost/dll/alias.hpp>
#include <sensor_msgs/point_cloud2_iterator.h>
#define VOXEL_BITS 16
using costmap_2d::NO_INFORMATION;
using costmap_2d::LETHAL_OBSTACLE;
using costmap_2d::FREE_SPACE;
using costmap_2d::ObservationBuffer;
using costmap_2d::Observation;
namespace costmap_2d
{
// void VoxelLayer::onInitialize()
// {
// ObstacleLayer::onInitialize();
// ros::NodeHandle private_nh("~/" + name_);
// private_nh.param("publish_voxel_map", publish_voxel_, false);
// if (publish_voxel_)
// voxel_pub_ = private_nh.advertise < costmap_2d::VoxelGrid > ("voxel_grid", 1);
// clearing_endpoints_pub_ = private_nh.advertise<sensor_msgs::PointCloud>("clearing_endpoints", 1);
// }
// void VoxelLayer::setupDynamicReconfigure(ros::NodeHandle& nh)
// {
// voxel_dsrv_ = new dynamic_reconfigure::Server<costmap_2d::VoxelPluginConfig>(nh);
// dynamic_reconfigure::Server<costmap_2d::VoxelPluginConfig>::CallbackType cb =
// [this](auto& config, auto level){ reconfigureCB(config, level); };
// voxel_dsrv_->setCallback(cb);
// }
VoxelLayer::~VoxelLayer()
{}
// void VoxelLayer::reconfigureCB(costmap_2d::VoxelPluginConfig &config, uint32_t level)
// {
// enabled_ = config.enabled;
// footprint_clearing_enabled_ = config.footprint_clearing_enabled;
// max_obstacle_height_ = config.max_obstacle_height;
// size_z_ = config.z_voxels;
// origin_z_ = config.origin_z;
// z_resolution_ = config.z_resolution;
// unknown_threshold_ = config.unknown_threshold + (VOXEL_BITS - size_z_);
// mark_threshold_ = config.mark_threshold;
// combination_method_ = config.combination_method;
// matchSize();
// }
// void VoxelLayer::matchSize()
// {
// ObstacleLayer::matchSize();
// voxel_grid_.resize(size_x_, size_y_, size_z_);
// ROS_ASSERT(voxel_grid_.sizeX() == size_x_ && voxel_grid_.sizeY() == size_y_);
// }
// void VoxelLayer::reset()
// {
// deactivate();
// resetMaps();
// voxel_grid_.reset();
// activate();
// }
// void VoxelLayer::resetMaps()
// {
// Costmap2D::resetMaps();
// voxel_grid_.reset();
// }
// void VoxelLayer::updateBounds(double robot_x, double robot_y, double robot_yaw, double* min_x,
// double* min_y, double* max_x, double* max_y)
// {
// if (rolling_window_)
// updateOrigin(robot_x - getSizeInMetersX() / 2, robot_y - getSizeInMetersY() / 2);
// useExtraBounds(min_x, min_y, max_x, max_y);
// bool current = true;
// std::vector<Observation> observations, clearing_observations;
// // get the marking observations
// current = getMarkingObservations(observations) && current;
// // get the clearing observations
// current = getClearingObservations(clearing_observations) && current;
// // update the global current status
// current_ = current;
// // raytrace freespace
// for (unsigned int i = 0; i < clearing_observations.size(); ++i)
// {
// raytraceFreespace(clearing_observations[i], min_x, min_y, max_x, max_y);
// }
// // place the new obstacles into a priority queue... each with a priority of zero to begin with
// for (std::vector<Observation>::const_iterator it = observations.begin(); it != observations.end(); ++it)
// {
// const Observation& obs = *it;
// const sensor_msgs::PointCloud2& cloud = *(obs.cloud_);
// double sq_obstacle_range = obs.obstacle_range_ * obs.obstacle_range_;
// sensor_msgs::PointCloud2ConstIterator<float> iter_x(cloud, "x");
// sensor_msgs::PointCloud2ConstIterator<float> iter_y(cloud, "y");
// sensor_msgs::PointCloud2ConstIterator<float> iter_z(cloud, "z");
// for (unsigned int i = 0; iter_x != iter_x.end(); ++iter_x, ++iter_y, ++iter_z)
// {
// // if the obstacle is too high or too far away from the robot we won't add it
// if (*iter_z > max_obstacle_height_)
// continue;
// // compute the squared distance from the hitpoint to the pointcloud's origin
// double sq_dist = (*iter_x - obs.origin_.x) * (*iter_x - obs.origin_.x)
// + (*iter_y - obs.origin_.y) * (*iter_y - obs.origin_.y)
// + (*iter_z - obs.origin_.z) * (*iter_z - obs.origin_.z);
// // if the point is far enough away... we won't consider it
// if (sq_dist >= sq_obstacle_range)
// continue;
// // now we need to compute the map coordinates for the observation
// unsigned int mx, my, mz;
// if (*iter_z < origin_z_)
// {
// if (!worldToMap3D(*iter_x, *iter_y, origin_z_, mx, my, mz))
// continue;
// }
// else if (!worldToMap3D(*iter_x, *iter_y, *iter_z, mx, my, mz))
// {
// continue;
// }
// // mark the cell in the voxel grid and check if we should also mark it in the costmap
// if (voxel_grid_.markVoxelInMap(mx, my, mz, mark_threshold_))
// {
// unsigned int index = getIndex(mx, my);
// costmap_[index] = LETHAL_OBSTACLE;
// touch(double(*iter_x), double(*iter_y), min_x, min_y, max_x, max_y);
// }
// }
// }
// if (publish_voxel_)
// {
// costmap_2d::VoxelGrid grid_msg;
// unsigned int size = voxel_grid_.sizeX() * voxel_grid_.sizeY();
// grid_msg.size_x = voxel_grid_.sizeX();
// grid_msg.size_y = voxel_grid_.sizeY();
// grid_msg.size_z = voxel_grid_.sizeZ();
// grid_msg.data.resize(size);
// memcpy(&grid_msg.data[0], voxel_grid_.getData(), size * sizeof(unsigned int));
// grid_msg.origin.x = origin_x_;
// grid_msg.origin.y = origin_y_;
// grid_msg.origin.z = origin_z_;
// grid_msg.resolutions.x = resolution_;
// grid_msg.resolutions.y = resolution_;
// grid_msg.resolutions.z = z_resolution_;
// grid_msg.header.frame_id = global_frame_;
// grid_msg.header.stamp = ros::Time::now();
// voxel_pub_.publish(grid_msg);
// }
// updateFootprint(robot_x, robot_y, robot_yaw, min_x, min_y, max_x, max_y);
// }
// void VoxelLayer::clearNonLethal(double wx, double wy, double w_size_x, double w_size_y, bool clear_no_info)
// {
// // get the cell coordinates of the center point of the window
// unsigned int mx, my;
// if (!worldToMap(wx, wy, mx, my))
// return;
// // compute the bounds of the window
// double start_x = wx - w_size_x / 2;
// double start_y = wy - w_size_y / 2;
// double end_x = start_x + w_size_x;
// double end_y = start_y + w_size_y;
// // scale the window based on the bounds of the costmap
// start_x = std::max(origin_x_, start_x);
// start_y = std::max(origin_y_, start_y);
// end_x = std::min(origin_x_ + getSizeInMetersX(), end_x);
// end_y = std::min(origin_y_ + getSizeInMetersY(), end_y);
// // get the map coordinates of the bounds of the window
// unsigned int map_sx, map_sy, map_ex, map_ey;
// // check for legality just in case
// if (!worldToMap(start_x, start_y, map_sx, map_sy) || !worldToMap(end_x, end_y, map_ex, map_ey))
// return;
// // we know that we want to clear all non-lethal obstacles in this window to get it ready for inflation
// unsigned int index = getIndex(map_sx, map_sy);
// unsigned char* current = &costmap_[index];
// for (unsigned int j = map_sy; j <= map_ey; ++j)
// {
// for (unsigned int i = map_sx; i <= map_ex; ++i)
// {
// // if the cell is a lethal obstacle... we'll keep it and queue it, otherwise... we'll clear it
// if (*current != LETHAL_OBSTACLE)
// {
// if (clear_no_info || *current != NO_INFORMATION)
// {
// *current = FREE_SPACE;
// voxel_grid_.clearVoxelColumn(index);
// }
// }
// current++;
// index++;
// }
// current += size_x_ - (map_ex - map_sx) - 1;
// index += size_x_ - (map_ex - map_sx) - 1;
// }
// }
// void VoxelLayer::raytraceFreespace(const Observation& clearing_observation, double* min_x, double* min_y,
// double* max_x, double* max_y)
// {
// size_t clearing_observation_cloud_size = clearing_observation.cloud_->height * clearing_observation.cloud_->width;
// if (clearing_observation_cloud_size == 0)
// return;
// double sensor_x, sensor_y, sensor_z;
// double ox = clearing_observation.origin_.x;
// double oy = clearing_observation.origin_.y;
// double oz = clearing_observation.origin_.z;
// if (!worldToMap3DFloat(ox, oy, oz, sensor_x, sensor_y, sensor_z))
// {
// ROS_WARN_THROTTLE(
// 1.0,
// "The origin for the sensor at (%.2f, %.2f, %.2f) is out of map bounds. So, the costmap cannot raytrace for it.",
// ox, oy, oz);
// return;
// }
// bool publish_clearing_points = (clearing_endpoints_pub_.getNumSubscribers() > 0);
// if (publish_clearing_points)
// {
// clearing_endpoints_.points.clear();
// clearing_endpoints_.points.reserve(clearing_observation_cloud_size);
// }
// // we can pre-compute the enpoints of the map outside of the inner loop... we'll need these later
// double map_end_x = origin_x_ + getSizeInMetersX();
// double map_end_y = origin_y_ + getSizeInMetersY();
// sensor_msgs::PointCloud2ConstIterator<float> iter_x(*(clearing_observation.cloud_), "x");
// sensor_msgs::PointCloud2ConstIterator<float> iter_y(*(clearing_observation.cloud_), "y");
// sensor_msgs::PointCloud2ConstIterator<float> iter_z(*(clearing_observation.cloud_), "z");
// for (;iter_x != iter_x.end(); ++iter_x, ++iter_y, ++iter_z)
// {
// double wpx = *iter_x;
// double wpy = *iter_y;
// double wpz = *iter_z;
// double distance = dist(ox, oy, oz, wpx, wpy, wpz);
// double scaling_fact = 1.0;
// scaling_fact = std::max(std::min(scaling_fact, (distance - 2 * resolution_) / distance), 0.0);
// wpx = scaling_fact * (wpx - ox) + ox;
// wpy = scaling_fact * (wpy - oy) + oy;
// wpz = scaling_fact * (wpz - oz) + oz;
// double a = wpx - ox;
// double b = wpy - oy;
// double c = wpz - oz;
// double t = 1.0;
// // we can only raytrace to a maximum z height
// if (wpz > max_obstacle_height_)
// {
// // we know we want the vector's z value to be max_z
// t = std::max(0.0, std::min(t, (max_obstacle_height_ - 0.01 - oz) / c));
// }
// // and we can only raytrace down to the floor
// else if (wpz < origin_z_)
// {
// // we know we want the vector's z value to be 0.0
// t = std::min(t, (origin_z_ - oz) / c);
// }
// // the minimum value to raytrace from is the origin
// if (wpx < origin_x_)
// {
// t = std::min(t, (origin_x_ - ox) / a);
// }
// if (wpy < origin_y_)
// {
// t = std::min(t, (origin_y_ - oy) / b);
// }
// // the maximum value to raytrace to is the end of the map
// if (wpx > map_end_x)
// {
// t = std::min(t, (map_end_x - ox) / a);
// }
// if (wpy > map_end_y)
// {
// t = std::min(t, (map_end_y - oy) / b);
// }
// wpx = ox + a * t;
// wpy = oy + b * t;
// wpz = oz + c * t;
// double point_x, point_y, point_z;
// if (worldToMap3DFloat(wpx, wpy, wpz, point_x, point_y, point_z))
// {
// unsigned int cell_raytrace_range = cellDistance(clearing_observation.raytrace_range_);
// // voxel_grid_.markVoxelLine(sensor_x, sensor_y, sensor_z, point_x, point_y, point_z);
// voxel_grid_.clearVoxelLineInMap(sensor_x, sensor_y, sensor_z, point_x, point_y, point_z, costmap_,
// unknown_threshold_, mark_threshold_, FREE_SPACE, NO_INFORMATION,
// cell_raytrace_range);
// updateRaytraceBounds(ox, oy, wpx, wpy, clearing_observation.raytrace_range_, min_x, min_y, max_x, max_y);
// if (publish_clearing_points)
// {
// geometry_msgs::Point32 point;
// point.x = wpx;
// point.y = wpy;
// point.z = wpz;
// clearing_endpoints_.points.push_back(point);
// }
// }
// }
// if (publish_clearing_points)
// {
// clearing_endpoints_.header.frame_id = global_frame_;
// clearing_endpoints_.header.stamp = clearing_observation.cloud_->header.stamp;
// clearing_endpoints_.header.seq = clearing_observation.cloud_->header.seq;
// clearing_endpoints_pub_.publish(clearing_endpoints_);
// }
// }
// void VoxelLayer::updateOrigin(double new_origin_x, double new_origin_y)
// {
// // project the new origin into the grid
// int cell_ox, cell_oy;
// cell_ox = int((new_origin_x - origin_x_) / resolution_);
// cell_oy = int((new_origin_y - origin_y_) / resolution_);
// // compute the associated world coordinates for the origin cell
// // beacuase we want to keep things grid-aligned
// double new_grid_ox, new_grid_oy;
// new_grid_ox = origin_x_ + cell_ox * resolution_;
// new_grid_oy = origin_y_ + cell_oy * resolution_;
// // To save casting from unsigned int to int a bunch of times
// int size_x = size_x_;
// int size_y = size_y_;
// // we need to compute the overlap of the new and existing windows
// int lower_left_x, lower_left_y, upper_right_x, upper_right_y;
// lower_left_x = std::min(std::max(cell_ox, 0), size_x);
// lower_left_y = std::min(std::max(cell_oy, 0), size_y);
// upper_right_x = std::min(std::max(cell_ox + size_x, 0), size_x);
// upper_right_y = std::min(std::max(cell_oy + size_y, 0), size_y);
// unsigned int cell_size_x = upper_right_x - lower_left_x;
// unsigned int cell_size_y = upper_right_y - lower_left_y;
// // we need a map to store the obstacles in the window temporarily
// unsigned char* local_map = new unsigned char[cell_size_x * cell_size_y];
// unsigned int* local_voxel_map = new unsigned int[cell_size_x * cell_size_y];
// unsigned int* voxel_map = voxel_grid_.getData();
// // copy the local window in the costmap to the local map
// copyMapRegion(costmap_, lower_left_x, lower_left_y, size_x_, local_map, 0, 0, cell_size_x, cell_size_x, cell_size_y);
// copyMapRegion(voxel_map, lower_left_x, lower_left_y, size_x_, local_voxel_map, 0, 0, cell_size_x, cell_size_x,
// cell_size_y);
// // we'll reset our maps to unknown space if appropriate
// resetMaps();
// // update the origin with the appropriate world coordinates
// origin_x_ = new_grid_ox;
// origin_y_ = new_grid_oy;
// // compute the starting cell location for copying data back in
// int start_x = lower_left_x - cell_ox;
// int start_y = lower_left_y - cell_oy;
// // now we want to copy the overlapping information back into the map, but in its new location
// copyMapRegion(local_map, 0, 0, cell_size_x, costmap_, start_x, start_y, size_x_, cell_size_x, cell_size_y);
// copyMapRegion(local_voxel_map, 0, 0, cell_size_x, voxel_map, start_x, start_y, size_x_, cell_size_x, cell_size_y);
// // make sure to clean up
// delete[] local_map;
// delete[] local_voxel_map;
// }
// Export factory function
static PluginPtr create_voxel_plugin() {
return std::make_shared<VoxelLayer>();
}
// Alias cho Boost.DLL (nếu muốn dùng boost::dll::import_alias)
BOOST_DLL_ALIAS(create_voxel_plugin, create_plugin)
} // namespace costmap_2d