costmap_2d/plugins/voxel_layer.cpp

461 lines
16 KiB
C++
Executable File

/*********************************************************************
*
* Software License Agreement (BSD License)
*
* Copyright (c) 2008, 2013, Willow Garage, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Willow Garage, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Author: Eitan Marder-Eppstein
* David V. Lu!!
*********************************************************************/
#include <costmap_2d/voxel_layer.h>
#include <sensor_msgs/point_cloud2_iterator.h>
#include <boost/dll/alias.hpp>
#define VOXEL_BITS 16
using costmap_2d::NO_INFORMATION;
using costmap_2d::LETHAL_OBSTACLE;
using costmap_2d::FREE_SPACE;
using costmap_2d::ObservationBuffer;
using costmap_2d::Observation;
namespace costmap_2d
{
void VoxelLayer::onInitialize()
{
ObstacleLayer::onInitialize();
std::string config_file_name = name_ + ".yaml";
getParams(config_file_name);
}
VoxelLayer::~VoxelLayer()
{}
bool VoxelLayer::getParams(const std::string& config_file_name)
{
try {
std::string folder = COSTMAP_2D_DIR;
std::string path_source = getSourceFile(folder,config_file_name);
YAML::Node config = YAML::LoadFile(path_source);
YAML::Node layer = config["voxel_layer"];
// publish_voxel_ = loadParam(layer, "publish_voxel_map", false);
enabled_ = loadParam(layer, "enabled", true);
footprint_clearing_enabled_ = loadParam(layer, "footprint_clearing_enabled", true);
max_obstacle_height_ = loadParam(layer, "max_obstacle_height", 2.0);
size_z_ = loadParam(layer, "z_voxels", 10.0);
origin_z_ = loadParam(layer, "origin_z", 0.0);
z_resolution_ = loadParam(layer, "z_resolution", 0.2);
unknown_threshold_ = loadParam(layer, "unknown_threshold", 15.0) + (VOXEL_BITS - size_z_);
mark_threshold_ = loadParam(layer, "mark_threshold", 0);
combination_method_ = loadParam(layer, "combination_method", 0.0);
this->matchSize();
}
catch (const YAML::BadFile& e) {
std::cerr << "Cannot open YAML file: " << e.what() << std::endl;
return false;
}
return true;
}
void VoxelLayer::matchSize()
{
ObstacleLayer::matchSize();
voxel_grid_.resize(size_x_, size_y_, size_z_);
if (!(voxel_grid_.sizeX() == size_x_ && voxel_grid_.sizeY() == size_y_))
{
std::cerr << "[FATAL] Voxel grid size mismatch: "
<< "voxel(" << voxel_grid_.sizeX() << ", " << voxel_grid_.sizeY()
<< ") but costmap(" << size_x_ << ", " << size_y_ << ")\n";
std::abort(); // dừng chương trình
}
}
void VoxelLayer::reset()
{
deactivate();
resetMaps();
voxel_grid_.reset();
activate();
}
void VoxelLayer::resetMaps()
{
Costmap2D::resetMaps();
voxel_grid_.reset();
}
void VoxelLayer::updateBounds(double robot_x, double robot_y, double robot_yaw, double* min_x,
double* min_y, double* max_x, double* max_y)
{
if (rolling_window_)
updateOrigin(robot_x - getSizeInMetersX() / 2, robot_y - getSizeInMetersY() / 2);
useExtraBounds(min_x, min_y, max_x, max_y);
bool current = true;
std::vector<Observation> observations, clearing_observations;
// get the marking observations
current = getMarkingObservations(observations) && current;
// get the clearing observations
current = getClearingObservations(clearing_observations) && current;
// update the global current status
current_ = current;
// raytrace freespace
for (unsigned int i = 0; i < clearing_observations.size(); ++i)
{
raytraceFreespace(clearing_observations[i], min_x, min_y, max_x, max_y);
}
// place the new obstacles into a priority queue... each with a priority of zero to begin with
for (std::vector<Observation>::const_iterator it = observations.begin(); it != observations.end(); ++it)
{
const Observation& obs = *it;
const sensor_msgs::PointCloud2& cloud = *(obs.cloud_);
double sq_obstacle_range = obs.obstacle_range_ * obs.obstacle_range_;
sensor_msgs::PointCloud2ConstIterator<float> iter_x(cloud, "x");
sensor_msgs::PointCloud2ConstIterator<float> iter_y(cloud, "y");
sensor_msgs::PointCloud2ConstIterator<float> iter_z(cloud, "z");
for (unsigned int i = 0; iter_x != iter_x.end(); ++iter_x, ++iter_y, ++iter_z)
{
// if the obstacle is too high or too far away from the robot we won't add it
if (*iter_z > max_obstacle_height_)
continue;
// compute the squared distance from the hitpoint to the pointcloud's origin
double sq_dist = (*iter_x - obs.origin_.x) * (*iter_x - obs.origin_.x)
+ (*iter_y - obs.origin_.y) * (*iter_y - obs.origin_.y)
+ (*iter_z - obs.origin_.z) * (*iter_z - obs.origin_.z);
// if the point is far enough away... we won't consider it
if (sq_dist >= sq_obstacle_range)
continue;
// now we need to compute the map coordinates for the observation
unsigned int mx, my, mz;
if (*iter_z < origin_z_)
{
if (!worldToMap3D(*iter_x, *iter_y, origin_z_, mx, my, mz))
continue;
}
else if (!worldToMap3D(*iter_x, *iter_y, *iter_z, mx, my, mz))
{
continue;
}
// mark the cell in the voxel grid and check if we should also mark it in the costmap
if (voxel_grid_.markVoxelInMap(mx, my, mz, mark_threshold_))
{
unsigned int index = getIndex(mx, my);
costmap_[index] = LETHAL_OBSTACLE;
touch(double(*iter_x), double(*iter_y), min_x, min_y, max_x, max_y);
}
}
}
// if (publish_voxel_)
// {
// costmap_2d::VoxelGrid grid_msg;
// unsigned int size = voxel_grid_.sizeX() * voxel_grid_.sizeY();
// grid_msg.size_x = voxel_grid_.sizeX();
// grid_msg.size_y = voxel_grid_.sizeY();
// grid_msg.size_z = voxel_grid_.sizeZ();
// grid_msg.data.resize(size);
// memcpy(&grid_msg.data[0], voxel_grid_.getData(), size * sizeof(unsigned int));
// grid_msg.origin.x = origin_x_;
// grid_msg.origin.y = origin_y_;
// grid_msg.origin.z = origin_z_;
// grid_msg.resolutions.x = resolution_;
// grid_msg.resolutions.y = resolution_;
// grid_msg.resolutions.z = z_resolution_;
// grid_msg.header.frame_id = global_frame_;
// grid_msg.header.stamp = robot::Time::now();
// voxel_pub_.publish(grid_msg);
// }
updateFootprint(robot_x, robot_y, robot_yaw, min_x, min_y, max_x, max_y);
}
void VoxelLayer::clearNonLethal(double wx, double wy, double w_size_x, double w_size_y, bool clear_no_info)
{
// get the cell coordinates of the center point of the window
unsigned int mx, my;
if (!worldToMap(wx, wy, mx, my))
return;
// compute the bounds of the window
double start_x = wx - w_size_x / 2;
double start_y = wy - w_size_y / 2;
double end_x = start_x + w_size_x;
double end_y = start_y + w_size_y;
// scale the window based on the bounds of the costmap
start_x = std::max(origin_x_, start_x);
start_y = std::max(origin_y_, start_y);
end_x = std::min(origin_x_ + getSizeInMetersX(), end_x);
end_y = std::min(origin_y_ + getSizeInMetersY(), end_y);
// get the map coordinates of the bounds of the window
unsigned int map_sx, map_sy, map_ex, map_ey;
// check for legality just in case
if (!worldToMap(start_x, start_y, map_sx, map_sy) || !worldToMap(end_x, end_y, map_ex, map_ey))
return;
// we know that we want to clear all non-lethal obstacles in this window to get it ready for inflation
unsigned int index = getIndex(map_sx, map_sy);
unsigned char* current = &costmap_[index];
for (unsigned int j = map_sy; j <= map_ey; ++j)
{
for (unsigned int i = map_sx; i <= map_ex; ++i)
{
// if the cell is a lethal obstacle... we'll keep it and queue it, otherwise... we'll clear it
if (*current != LETHAL_OBSTACLE)
{
if (clear_no_info || *current != NO_INFORMATION)
{
*current = FREE_SPACE;
voxel_grid_.clearVoxelColumn(index);
}
}
current++;
index++;
}
current += size_x_ - (map_ex - map_sx) - 1;
index += size_x_ - (map_ex - map_sx) - 1;
}
}
void VoxelLayer::raytraceFreespace(const Observation& clearing_observation, double* min_x, double* min_y,
double* max_x, double* max_y)
{
size_t clearing_observation_cloud_size = clearing_observation.cloud_->height * clearing_observation.cloud_->width;
if (clearing_observation_cloud_size == 0)
return;
double sensor_x, sensor_y, sensor_z;
double ox = clearing_observation.origin_.x;
double oy = clearing_observation.origin_.y;
double oz = clearing_observation.origin_.z;
if (!worldToMap3DFloat(ox, oy, oz, sensor_x, sensor_y, sensor_z))
{
printf(
"The origin for the sensor at (%.2f, %.2f, %.2f) is out of map bounds. So, the costmap cannot raytrace for it.\n",
ox, oy, oz);
return;
}
// bool publish_clearing_points = (clearing_endpoints_pub_.getNumSubscribers() > 0);
// if (publish_clearing_points)
// {
clearing_endpoints_.points.clear();
clearing_endpoints_.points.reserve(clearing_observation_cloud_size);
// }
// we can pre-compute the enpoints of the map outside of the inner loop... we'll need these later
double map_end_x = origin_x_ + getSizeInMetersX();
double map_end_y = origin_y_ + getSizeInMetersY();
sensor_msgs::PointCloud2ConstIterator<float> iter_x(*(clearing_observation.cloud_), "x");
sensor_msgs::PointCloud2ConstIterator<float> iter_y(*(clearing_observation.cloud_), "y");
sensor_msgs::PointCloud2ConstIterator<float> iter_z(*(clearing_observation.cloud_), "z");
for (;iter_x != iter_x.end(); ++iter_x, ++iter_y, ++iter_z)
{
double wpx = *iter_x;
double wpy = *iter_y;
double wpz = *iter_z;
double distance = dist(ox, oy, oz, wpx, wpy, wpz);
double scaling_fact = 1.0;
scaling_fact = std::max(std::min(scaling_fact, (distance - 2 * resolution_) / distance), 0.0);
wpx = scaling_fact * (wpx - ox) + ox;
wpy = scaling_fact * (wpy - oy) + oy;
wpz = scaling_fact * (wpz - oz) + oz;
double a = wpx - ox;
double b = wpy - oy;
double c = wpz - oz;
double t = 1.0;
// we can only raytrace to a maximum z height
if (wpz > max_obstacle_height_)
{
// we know we want the vector's z value to be max_z
t = std::max(0.0, std::min(t, (max_obstacle_height_ - 0.01 - oz) / c));
}
// and we can only raytrace down to the floor
else if (wpz < origin_z_)
{
// we know we want the vector's z value to be 0.0
t = std::min(t, (origin_z_ - oz) / c);
}
// the minimum value to raytrace from is the origin
if (wpx < origin_x_)
{
t = std::min(t, (origin_x_ - ox) / a);
}
if (wpy < origin_y_)
{
t = std::min(t, (origin_y_ - oy) / b);
}
// the maximum value to raytrace to is the end of the map
if (wpx > map_end_x)
{
t = std::min(t, (map_end_x - ox) / a);
}
if (wpy > map_end_y)
{
t = std::min(t, (map_end_y - oy) / b);
}
wpx = ox + a * t;
wpy = oy + b * t;
wpz = oz + c * t;
double point_x, point_y, point_z;
if (worldToMap3DFloat(wpx, wpy, wpz, point_x, point_y, point_z))
{
unsigned int cell_raytrace_range = cellDistance(clearing_observation.raytrace_range_);
// voxel_grid_.markVoxelLine(sensor_x, sensor_y, sensor_z, point_x, point_y, point_z);
voxel_grid_.clearVoxelLineInMap(sensor_x, sensor_y, sensor_z, point_x, point_y, point_z, costmap_,
unknown_threshold_, mark_threshold_, FREE_SPACE, NO_INFORMATION,
cell_raytrace_range);
updateRaytraceBounds(ox, oy, wpx, wpy, clearing_observation.raytrace_range_, min_x, min_y, max_x, max_y);
// if (publish_clearing_points)
// {
geometry_msgs::Point32 point;
point.x = wpx;
point.y = wpy;
point.z = wpz;
clearing_endpoints_.points.push_back(point);
// }
}
}
// if (publish_clearing_points)
// {
clearing_endpoints_.header.frame_id = global_frame_;
clearing_endpoints_.header.stamp = clearing_observation.cloud_->header.stamp;
clearing_endpoints_.header.seq = clearing_observation.cloud_->header.seq;
// clearing_endpoints_pub_.publish(clearing_endpoints_);
// }
}
void VoxelLayer::updateOrigin(double new_origin_x, double new_origin_y)
{
// project the new origin into the grid
int cell_ox, cell_oy;
cell_ox = int((new_origin_x - origin_x_) / resolution_);
cell_oy = int((new_origin_y - origin_y_) / resolution_);
// compute the associated world coordinates for the origin cell
// beacuase we want to keep things grid-aligned
double new_grid_ox, new_grid_oy;
new_grid_ox = origin_x_ + cell_ox * resolution_;
new_grid_oy = origin_y_ + cell_oy * resolution_;
// To save casting from unsigned int to int a bunch of times
int size_x = size_x_;
int size_y = size_y_;
// we need to compute the overlap of the new and existing windows
int lower_left_x, lower_left_y, upper_right_x, upper_right_y;
lower_left_x = std::min(std::max(cell_ox, 0), size_x);
lower_left_y = std::min(std::max(cell_oy, 0), size_y);
upper_right_x = std::min(std::max(cell_ox + size_x, 0), size_x);
upper_right_y = std::min(std::max(cell_oy + size_y, 0), size_y);
unsigned int cell_size_x = upper_right_x - lower_left_x;
unsigned int cell_size_y = upper_right_y - lower_left_y;
// we need a map to store the obstacles in the window temporarily
unsigned char* local_map = new unsigned char[cell_size_x * cell_size_y];
unsigned int* local_voxel_map = new unsigned int[cell_size_x * cell_size_y];
unsigned int* voxel_map = voxel_grid_.getData();
// copy the local window in the costmap to the local map
copyMapRegion(costmap_, lower_left_x, lower_left_y, size_x_, local_map, 0, 0, cell_size_x, cell_size_x, cell_size_y);
copyMapRegion(voxel_map, lower_left_x, lower_left_y, size_x_, local_voxel_map, 0, 0, cell_size_x, cell_size_x,
cell_size_y);
// we'll reset our maps to unknown space if appropriate
resetMaps();
// update the origin with the appropriate world coordinates
origin_x_ = new_grid_ox;
origin_y_ = new_grid_oy;
// compute the starting cell location for copying data back in
int start_x = lower_left_x - cell_ox;
int start_y = lower_left_y - cell_oy;
// now we want to copy the overlapping information back into the map, but in its new location
copyMapRegion(local_map, 0, 0, cell_size_x, costmap_, start_x, start_y, size_x_, cell_size_x, cell_size_y);
copyMapRegion(local_voxel_map, 0, 0, cell_size_x, voxel_map, start_x, start_y, size_x_, cell_size_x, cell_size_y);
// make sure to clean up
delete[] local_map;
delete[] local_voxel_map;
}
// Export factory function
static boost::shared_ptr<Layer> create_voxel_plugin() {
return boost::make_shared<VoxelLayer>();
}
// Alias cho Boost.DLL (nếu muốn dùng boost::dll::import_alias)
BOOST_DLL_ALIAS(create_voxel_plugin, create_voxel_layer)
} // namespace costmap_2d