#include #include #include // #include #include #include #include using costmap_2d::NO_INFORMATION; using costmap_2d::LETHAL_OBSTACLE; using costmap_2d::FREE_SPACE; using costmap_2d::ObservationBuffer; using costmap_2d::Observation; namespace costmap_2d { void ObstacleLayer::onInitialize() { getParams(); // ros::NodeHandle nh("~/" + name_), g_nh; rolling_window_ = layered_costmap_->isRolling(); bool track_unknown_space; // nh.param("track_unknown_space", track_unknown_space, layered_costmap_->isTrackingUnknown()); if (track_unknown_space) default_value_ = NO_INFORMATION; else default_value_ = FREE_SPACE; ObstacleLayer::matchSize(); current_ = true; global_frame_ = layered_costmap_->getGlobalFrameID(); double transform_tolerance; // nh.param("transform_tolerance", transform_tolerance, 0.2); std::string topics_string; // get the topics that we'll subscribe to from the parameter server // nh.param("observation_sources", topics_string, std::string("")); // ROS_INFO(" Subscribed to Topics: %s", topics_string.c_str()); // now we need to split the topics based on whitespace which we can use a stringstream for std::stringstream ss(topics_string); /* std::string source; while (ss >> source) { ros::NodeHandle source_node(nh, source); // get the parameters for the specific topic double observation_keep_time, expected_update_rate, min_obstacle_height, max_obstacle_height; std::string topic, sensor_frame, data_type; bool inf_is_valid, clearing, marking; source_node.param("topic", topic, source); source_node.param("sensor_frame", sensor_frame, std::string("")); source_node.param("observation_persistence", observation_keep_time, 0.0); source_node.param("expected_update_rate", expected_update_rate, 0.0); source_node.param("data_type", data_type, std::string("PointCloud")); source_node.param("min_obstacle_height", min_obstacle_height, 0.0); source_node.param("max_obstacle_height", max_obstacle_height, 2.0); source_node.param("inf_is_valid", inf_is_valid, false); source_node.param("clearing", clearing, false); source_node.param("marking", marking, true); if (!(data_type == "PointCloud2" || data_type == "PointCloud" || data_type == "LaserScan")) { ROS_FATAL("Only topics that use point clouds or laser scans are currently supported"); throw std::runtime_error("Only topics that use point clouds or laser scans are currently supported"); } std::string raytrace_range_param_name, obstacle_range_param_name; // get the obstacle range for the sensor double obstacle_range = 2.5; if (source_node.searchParam("obstacle_range", obstacle_range_param_name)) { source_node.getParam(obstacle_range_param_name, obstacle_range); } // get the raytrace range for the sensor double raytrace_range = 3.0; if (source_node.searchParam("raytrace_range", raytrace_range_param_name)) { source_node.getParam(raytrace_range_param_name, raytrace_range); } printf("Creating an observation buffer for source %s, topic %s, frame %s", source.c_str(), topic.c_str(), sensor_frame.c_str()); // create an observation buffer observation_buffers_.push_back( boost::shared_ptr < ObservationBuffer > (new ObservationBuffer(topic, observation_keep_time, expected_update_rate, min_obstacle_height, max_obstacle_height, obstacle_range, raytrace_range, *tf_, global_frame_, sensor_frame, transform_tolerance))); // check if we'll add this buffer to our marking observation buffers if (marking) marking_buffers_.push_back(observation_buffers_.back()); // check if we'll also add this buffer to our clearing observation buffers if (clearing) clearing_buffers_.push_back(observation_buffers_.back()); printf( "Created an observation buffer for source %s, topic %s, global frame: %s, " "expected update rate: %.2f, observation persistence: %.2f", source.c_str(), topic.c_str(), global_frame_.c_str(), expected_update_rate, observation_keep_time); // create a callback for the topic if (data_type == "LaserScan") { boost::shared_ptr < message_filters::Subscriber > sub(new message_filters::Subscriber(g_nh, topic, 50)); boost::shared_ptr > filter( new tf2_ros::MessageFilter(*sub, *tf_, global_frame_,50 , g_nh)); if (inf_is_valid) { filter->registerCallback([this,buffer=observation_buffers_.back()](auto& msg){ laserScanValidInfCallback(msg, buffer); }); } else { filter->registerCallback([this,buffer=observation_buffers_.back()](auto& msg){ laserScanCallback(msg, buffer); }); } observation_subscribers_.push_back(sub); observation_notifiers_.push_back(filter); observation_notifiers_.back()->setTolerance(ros::Duration(0.05)); } else if (data_type == "PointCloud") { boost::shared_ptr < message_filters::Subscriber > sub(new message_filters::Subscriber(g_nh, topic, 50)); if (inf_is_valid) { ROS_WARN("obstacle_layer: inf_is_valid option is not applicable to PointCloud observations."); } boost::shared_ptr < tf2_ros::MessageFilter > filter(new tf2_ros::MessageFilter(*sub, *tf_, global_frame_, 50, g_nh)); filter->registerCallback([this,buffer=observation_buffers_.back()](auto& msg){ pointCloudCallback(msg, buffer); }); observation_subscribers_.push_back(sub); observation_notifiers_.push_back(filter); } else { boost::shared_ptr < message_filters::Subscriber > sub(new message_filters::Subscriber(g_nh, topic, 50)); if (inf_is_valid) { ROS_WARN("obstacle_layer: inf_is_valid option is not applicable to PointCloud observations."); } boost::shared_ptr < tf2_ros::MessageFilter > filter(new tf2_ros::MessageFilter(*sub, *tf_, global_frame_, 50, g_nh)); filter->registerCallback([this,buffer=observation_buffers_.back()](auto& msg){ pointCloud2Callback(msg, buffer); }); observation_subscribers_.push_back(sub); observation_notifiers_.push_back(filter); } if (sensor_frame != "") { std::vector < std::string > target_frames; target_frames.push_back(global_frame_); target_frames.push_back(sensor_frame); observation_notifiers_.back()->setTargetFrames(target_frames); } } */ // dsrv_ = NULL; // setupDynamicReconfigure(nh); } // void ObstacleLayer::setupDynamicReconfigure(ros::NodeHandle& nh) // { // dsrv_ = new dynamic_reconfigure::Server(nh); // dynamic_reconfigure::Server::CallbackType cb = // [this](auto& config, auto level){ reconfigureCB(config, level); }; // dsrv_->setCallback(cb); // } ObstacleLayer::~ObstacleLayer() {} bool StaticLayer::getParams() { try { YAML::Node config = YAML::LoadFile("/home/duongtd/robotics_core/costmap_2d/config/config.yaml"); YAML::Node layer = config["obstacle_layer"]; bool enabled = loadParam(layer, "enabled", true); bool footprint_clearing_enabled = loadParam(layer, "footprint_clearing_enabled", true); double max_obstacle_height = loadParam(layer, "max_obstacle_height", 2); int combination_method = loadParam(layer, "combination_method", 1); enabled_ = enabled; footprint_clearing_enabled_ = footprint_clearing_enabled; max_obstacle_height_ = max_obstacle_height; combination_method_ = combination_method; } catch (const YAML::BadFile& e) { std::cerr << "Cannot open YAML file: " << e.what() << std::endl; return false; } return true; } // void ObstacleLayer::laserScanCallback(const sensor_msgs::LaserScanConstPtr& message, // const boost::shared_ptr& buffer) // { // // project the laser into a point cloud // sensor_msgs::PointCloud2 cloud; // cloud.header = message->header; // // project the scan into a point cloud // try // { // projector_.transformLaserScanToPointCloud(message->header.frame_id, *message, cloud, *tf_); // } // catch (tf2::TransformException &ex) // { // ROS_WARN("High fidelity enabled, but TF returned a transform exception to frame %s: %s", global_frame_.c_str(), // ex.what()); // projector_.projectLaser(*message, cloud); // } // catch (std::runtime_error &ex) // { // ROS_WARN("transformLaserScanToPointCloud error, it seems the message from laser sensor is malformed. Ignore this laser scan. what(): %s", ex.what()); // return; //ignore this message // } // // buffer the point cloud // buffer->lock(); // buffer->bufferCloud(cloud); // buffer->unlock(); // } // void ObstacleLayer::laserScanValidInfCallback(const sensor_msgs::LaserScanConstPtr& raw_message, // const boost::shared_ptr& buffer) // { // // Filter positive infinities ("Inf"s) to max_range. // float epsilon = 0.0001; // a tenth of a millimeter // sensor_msgs::LaserScan message = *raw_message; // for (size_t i = 0; i < message.ranges.size(); i++) // { // float range = message.ranges[ i ]; // if (!std::isfinite(range) && range > 0) // { // message.ranges[ i ] = message.range_max - epsilon; // } // } // // project the laser into a point cloud // sensor_msgs::PointCloud2 cloud; // cloud.header = message.header; // // project the scan into a point cloud // try // { // projector_.transformLaserScanToPointCloud(message.header.frame_id, message, cloud, *tf_); // } // catch (tf2::TransformException &ex) // { // ROS_WARN("High fidelity enabled, but TF returned a transform exception to frame %s: %s", // global_frame_.c_str(), ex.what()); // projector_.projectLaser(message, cloud); // } // catch (std::runtime_error &ex) // { // ROS_WARN("transformLaserScanToPointCloud error, it seems the message from laser sensor is malformed. Ignore this laser scan. what(): %s", ex.what()); // return; //ignore this message // } // // buffer the point cloud // buffer->lock(); // buffer->bufferCloud(cloud); // buffer->unlock(); // } // void ObstacleLayer::pointCloudCallback(const sensor_msgs::PointCloudConstPtr& message, // const boost::shared_ptr& buffer) // { // sensor_msgs::PointCloud2 cloud2; // if (!sensor_msgs::convertPointCloudToPointCloud2(*message, cloud2)) // { // ROS_ERROR("Failed to convert a PointCloud to a PointCloud2, dropping message"); // return; // } // // buffer the point cloud // buffer->lock(); // buffer->bufferCloud(cloud2); // buffer->unlock(); // } // void ObstacleLayer::pointCloud2Callback(const sensor_msgs::PointCloud2ConstPtr& message, // const boost::shared_ptr& buffer) // { // // buffer the point cloud // buffer->lock(); // buffer->bufferCloud(*message); // buffer->unlock(); // } void ObstacleLayer::updateBounds(double robot_x, double robot_y, double robot_yaw, double* min_x, double* min_y, double* max_x, double* max_y) { if (rolling_window_) updateOrigin(robot_x - getSizeInMetersX() / 2, robot_y - getSizeInMetersY() / 2); useExtraBounds(min_x, min_y, max_x, max_y); bool current = true; std::vector observations, clearing_observations; // get the marking observations current = current && getMarkingObservations(observations); // get the clearing observations current = current && getClearingObservations(clearing_observations); // update the global current status current_ = current; // raytrace freespace for (unsigned int i = 0; i < clearing_observations.size(); ++i) { raytraceFreespace(clearing_observations[i], min_x, min_y, max_x, max_y); } // place the new obstacles into a priority queue... each with a priority of zero to begin with for (std::vector::const_iterator it = observations.begin(); it != observations.end(); ++it) { const Observation& obs = *it; const sensor_msgs::PointCloud2& cloud = *(obs.cloud_); double sq_obstacle_range = obs.obstacle_range_ * obs.obstacle_range_; sensor_msgs::PointCloud2ConstIterator iter_x(cloud, "x"); sensor_msgs::PointCloud2ConstIterator iter_y(cloud, "y"); sensor_msgs::PointCloud2ConstIterator iter_z(cloud, "z"); for (; iter_x !=iter_x.end(); ++iter_x, ++iter_y, ++iter_z) { double px = *iter_x, py = *iter_y, pz = *iter_z; // if the obstacle is too high or too far away from the robot we won't add it if (pz > max_obstacle_height_) { printf("The point is too high"); continue; } // compute the squared distance from the hitpoint to the pointcloud's origin double sq_dist = (px - obs.origin_.x) * (px - obs.origin_.x) + (py - obs.origin_.y) * (py - obs.origin_.y) + (pz - obs.origin_.z) * (pz - obs.origin_.z); // if the point is far enough away... we won't consider it if (sq_dist >= sq_obstacle_range) { printf("The point is too far away"); continue; } // now we need to compute the map coordinates for the observation unsigned int mx, my; if (!worldToMap(px, py, mx, my)) { printf("Computing map coords failed"); continue; } unsigned int index = getIndex(mx, my); costmap_[index] = LETHAL_OBSTACLE; touch(px, py, min_x, min_y, max_x, max_y); } } updateFootprint(robot_x, robot_y, robot_yaw, min_x, min_y, max_x, max_y); } void ObstacleLayer::updateFootprint(double robot_x, double robot_y, double robot_yaw, double* min_x, double* min_y, double* max_x, double* max_y) { if (!footprint_clearing_enabled_) return; transformFootprint(robot_x, robot_y, robot_yaw, getFootprint(), transformed_footprint_); for (unsigned int i = 0; i < transformed_footprint_.size(); i++) { touch(transformed_footprint_[i].x, transformed_footprint_[i].y, min_x, min_y, max_x, max_y); } } void ObstacleLayer::updateCosts(costmap_2d::Costmap2D& master_grid, int min_i, int min_j, int max_i, int max_j) { if (footprint_clearing_enabled_) { setConvexPolygonCost(transformed_footprint_, costmap_2d::FREE_SPACE); } switch (combination_method_) { case 0: // Overwrite updateWithOverwrite(master_grid, min_i, min_j, max_i, max_j); break; case 1: // Maximum updateWithMax(master_grid, min_i, min_j, max_i, max_j); break; default: // Nothing break; } } void ObstacleLayer::addStaticObservation(costmap_2d::Observation& obs, bool marking, bool clearing) { if (marking) static_marking_observations_.push_back(obs); if (clearing) static_clearing_observations_.push_back(obs); } void ObstacleLayer::clearStaticObservations(bool marking, bool clearing) { if (marking) static_marking_observations_.clear(); if (clearing) static_clearing_observations_.clear(); } bool ObstacleLayer::getMarkingObservations(std::vector& marking_observations) const { bool current = true; // get the marking observations for (unsigned int i = 0; i < marking_buffers_.size(); ++i) { marking_buffers_[i]->lock(); marking_buffers_[i]->getObservations(marking_observations); current = marking_buffers_[i]->isCurrent() && current; marking_buffers_[i]->unlock(); } marking_observations.insert(marking_observations.end(), static_marking_observations_.begin(), static_marking_observations_.end()); return current; } bool ObstacleLayer::getClearingObservations(std::vector& clearing_observations) const { bool current = true; // get the clearing observations for (unsigned int i = 0; i < clearing_buffers_.size(); ++i) { clearing_buffers_[i]->lock(); clearing_buffers_[i]->getObservations(clearing_observations); current = clearing_buffers_[i]->isCurrent() && current; clearing_buffers_[i]->unlock(); } clearing_observations.insert(clearing_observations.end(), static_clearing_observations_.begin(), static_clearing_observations_.end()); return current; } void ObstacleLayer::raytraceFreespace(const Observation& clearing_observation, double* min_x, double* min_y, double* max_x, double* max_y) { double ox = clearing_observation.origin_.x; double oy = clearing_observation.origin_.y; const sensor_msgs::PointCloud2 &cloud = *(clearing_observation.cloud_); // get the map coordinates of the origin of the sensor unsigned int x0, y0; if (!worldToMap(ox, oy, x0, y0)) { printf( "The origin for the sensor at (%.2f, %.2f) is out of map bounds. So, the costmap cannot raytrace for it.", ox, oy); return; } // we can pre-compute the enpoints of the map outside of the inner loop... we'll need these later double origin_x = origin_x_, origin_y = origin_y_; double map_end_x = origin_x + size_x_ * resolution_; double map_end_y = origin_y + size_y_ * resolution_; touch(ox, oy, min_x, min_y, max_x, max_y); // for each point in the cloud, we want to trace a line from the origin and clear obstacles along it sensor_msgs::PointCloud2ConstIterator iter_x(cloud, "x"); sensor_msgs::PointCloud2ConstIterator iter_y(cloud, "y"); for (; iter_x != iter_x.end(); ++iter_x, ++iter_y) { double wx = *iter_x; double wy = *iter_y; // now we also need to make sure that the enpoint we're raytracing // to isn't off the costmap and scale if necessary double a = wx - ox; double b = wy - oy; // the minimum value to raytrace from is the origin if (wx < origin_x) { double t = (origin_x - ox) / a; wx = origin_x; wy = oy + b * t; } if (wy < origin_y) { double t = (origin_y - oy) / b; wx = ox + a * t; wy = origin_y; } // the maximum value to raytrace to is the end of the map if (wx > map_end_x) { double t = (map_end_x - ox) / a; wx = map_end_x - .001; wy = oy + b * t; } if (wy > map_end_y) { double t = (map_end_y - oy) / b; wx = ox + a * t; wy = map_end_y - .001; } // now that the vector is scaled correctly... we'll get the map coordinates of its endpoint unsigned int x1, y1; // check for legality just in case if (!worldToMap(wx, wy, x1, y1)) continue; unsigned int cell_raytrace_range = cellDistance(clearing_observation.raytrace_range_); MarkCell marker(costmap_, FREE_SPACE); // and finally... we can execute our trace to clear obstacles along that line raytraceLine(marker, x0, y0, x1, y1, cell_raytrace_range); updateRaytraceBounds(ox, oy, wx, wy, clearing_observation.raytrace_range_, min_x, min_y, max_x, max_y); } } // void ObstacleLayer::activate() // { // // if we're stopped we need to re-subscribe to topics // for (unsigned int i = 0; i < observation_subscribers_.size(); ++i) // { // if (observation_subscribers_[i] != NULL) // observation_subscribers_[i]->subscribe(); // } // for (unsigned int i = 0; i < observation_buffers_.size(); ++i) // { // if (observation_buffers_[i]) // observation_buffers_[i]->resetLastUpdated(); // } // } // void ObstacleLayer::deactivate() // { // for (unsigned int i = 0; i < observation_subscribers_.size(); ++i) // { // if (observation_subscribers_[i] != NULL) // observation_subscribers_[i]->unsubscribe(); // } // } void ObstacleLayer::updateRaytraceBounds(double ox, double oy, double wx, double wy, double range, double* min_x, double* min_y, double* max_x, double* max_y) { double dx = wx-ox, dy = wy-oy; double full_distance = hypot(dx, dy); double scale = std::min(1.0, range / full_distance); double ex = ox + dx * scale, ey = oy + dy * scale; touch(ex, ey, min_x, min_y, max_x, max_y); } // void ObstacleLayer::reset() // { // deactivate(); // resetMaps(); // current_ = true; // activate(); // } // Export factory function static PluginPtr create_obstacle_plugin() { return std::make_shared(); } // Alias cho Boost.DLL (nếu muốn dùng boost::dll::import_alias) BOOST_DLL_ALIAS(create_obstacle_plugin, create_plugin) } // namespace costmap_2d