#include #include #include #include #include #include #include using costmap_2d::LETHAL_OBSTACLE; using costmap_2d::INSCRIBED_INFLATED_OBSTACLE; using costmap_2d::NO_INFORMATION; namespace costmap_2d { InflationLayer::InflationLayer() : resolution_(0) , inflation_radius_(0) , inscribed_radius_(0) , weight_(0) , inflate_unknown_(false) , cell_inflation_radius_(0) , cached_cell_inflation_radius_(0) // , dsrv_(NULL) , seen_(NULL) , cached_costs_(NULL) , cached_distances_(NULL) , last_min_x_(-std::numeric_limits::max()) , last_min_y_(-std::numeric_limits::max()) , last_max_x_(std::numeric_limits::max()) , last_max_y_(std::numeric_limits::max()) { inflation_access_ = new boost::recursive_mutex(); } void InflationLayer::onInitialize() { { boost::unique_lock < boost::recursive_mutex > lock(*inflation_access_); current_ = true; if (seen_) delete[] seen_; seen_ = NULL; seen_size_ = 0; need_reinflation_ = false; getParams(); } matchSize(); } bool InflationLayer::getParams() { try { YAML::Node config = YAML::LoadFile("../cfg/config.yaml"); YAML::Node layer = config["inflation_layer"]; double cost_scaling_factor = loadParam(layer, "cost_scaling_factor", 15.0); double inflation_radius = loadParam(layer, "inflation_radius", 0.55); setInflationParameters(inflation_radius, cost_scaling_factor); bool enabled = loadParam(layer, "enabled", true); bool inflate_unknown = loadParam(layer, "inflate_unknown", false); if (enabled_ != enabled || inflate_unknown_ != inflate_unknown) { enabled_ = enabled; inflate_unknown_ = inflate_unknown; need_reinflation_ = true; } } catch (const YAML::BadFile& e) { std::cerr << "Cannot open YAML file: " << e.what() << std::endl; return false; } return true; } // void InflationLayer::reconfigureCB(costmap_2d::InflationPluginConfig &config, uint32_t level) // { // setInflationParameters(config.inflation_radius, config.cost_scaling_factor); // if (enabled_ != config.enabled || inflate_unknown_ != config.inflate_unknown) { // enabled_ = config.enabled; // inflate_unknown_ = config.inflate_unknown; // need_reinflation_ = true; // } // } void InflationLayer::matchSize() { boost::unique_lock < boost::recursive_mutex > lock(*inflation_access_); costmap_2d::Costmap2D* costmap = layered_costmap_->getCostmap(); resolution_ = costmap->getResolution(); cell_inflation_radius_ = cellDistance(inflation_radius_); computeCaches(); unsigned int size_x = costmap->getSizeInCellsX(), size_y = costmap->getSizeInCellsY(); if (seen_) delete[] seen_; seen_size_ = size_x * size_y; seen_ = new bool[seen_size_]; } void InflationLayer::updateBounds(double robot_x, double robot_y, double robot_yaw, double* min_x, double* min_y, double* max_x, double* max_y) { if (need_reinflation_) { last_min_x_ = *min_x; last_min_y_ = *min_y; last_max_x_ = *max_x; last_max_y_ = *max_y; // For some reason when I make these -::max() it does not // work with Costmap2D::worldToMapEnforceBounds(), so I'm using // -::max() instead. *min_x = -std::numeric_limits::max(); *min_y = -std::numeric_limits::max(); *max_x = std::numeric_limits::max(); *max_y = std::numeric_limits::max(); need_reinflation_ = false; } else { double tmp_min_x = last_min_x_; double tmp_min_y = last_min_y_; double tmp_max_x = last_max_x_; double tmp_max_y = last_max_y_; last_min_x_ = *min_x; last_min_y_ = *min_y; last_max_x_ = *max_x; last_max_y_ = *max_y; *min_x = std::min(tmp_min_x, *min_x) - inflation_radius_; *min_y = std::min(tmp_min_y, *min_y) - inflation_radius_; *max_x = std::max(tmp_max_x, *max_x) + inflation_radius_; *max_y = std::max(tmp_max_y, *max_y) + inflation_radius_; } } void InflationLayer::onFootprintChanged() { inscribed_radius_ = layered_costmap_->getInscribedRadius(); cell_inflation_radius_ = cellDistance(inflation_radius_); computeCaches(); need_reinflation_ = true; printf("InflationLayer::onFootprintChanged(): num footprint points: %lu," " inscribed_radius_ = %.3f, inflation_radius_ = %.3f", layered_costmap_->getFootprint().size(), inscribed_radius_, inflation_radius_); } void InflationLayer::updateCosts(costmap_2d::Costmap2D& master_grid, int min_i, int min_j, int max_i, int max_j) { boost::unique_lock < boost::recursive_mutex > lock(*inflation_access_); if (cell_inflation_radius_ == 0) return; // make sure the inflation list is empty at the beginning of the cycle (should always be true) if (!inflation_cells_.empty()) { throw std::runtime_error("The inflation list must be empty at the beginning of inflation"); } unsigned char* master_array = master_grid.getCharMap(); unsigned int size_x = master_grid.getSizeInCellsX(), size_y = master_grid.getSizeInCellsY(); if (seen_ == NULL) { std::cerr <<"InflationLayer::updateCosts(): seen_ array is NULL" < to emulate the priority queue used before, with a notable performance boost // Start with lethal obstacles: by definition distance is 0.0 std::vector& obs_bin = inflation_cells_[0.0]; for (int j = min_j; j < max_j; j++) { for (int i = min_i; i < max_i; i++) { int index = master_grid.getIndex(i, j); unsigned char cost = master_array[index]; if (cost == LETHAL_OBSTACLE) { obs_bin.push_back(CellData(index, i, j, i, j)); } } } // Process cells by increasing distance; new cells are appended to the corresponding distance bin, so they // can overtake previously inserted but farther away cells std::map >::iterator bin; for (bin = inflation_cells_.begin(); bin != inflation_cells_.end(); ++bin) { for (int i = 0; i < bin->second.size(); ++i) { // process all cells at distance dist_bin.first const CellData& cell = bin->second[i]; unsigned int index = cell.index_; // ignore if already visited if (seen_[index]) { continue; } seen_[index] = true; unsigned int mx = cell.x_; unsigned int my = cell.y_; unsigned int sx = cell.src_x_; unsigned int sy = cell.src_y_; // assign the cost associated with the distance from an obstacle to the cell unsigned char cost = costLookup(mx, my, sx, sy); unsigned char old_cost = master_array[index]; if (old_cost == NO_INFORMATION && (inflate_unknown_ ? (cost > FREE_SPACE) : (cost >= INSCRIBED_INFLATED_OBSTACLE))) master_array[index] = cost; else master_array[index] = std::max(old_cost, cost); // attempt to put the neighbors of the current cell onto the inflation list if (mx > 0) enqueue(index - 1, mx - 1, my, sx, sy); if (my > 0) enqueue(index - size_x, mx, my - 1, sx, sy); if (mx < size_x - 1) enqueue(index + 1, mx + 1, my, sx, sy); if (my < size_y - 1) enqueue(index + size_x, mx, my + 1, sx, sy); } } inflation_cells_.clear(); } /** * @brief Given an index of a cell in the costmap, place it into a list pending for obstacle inflation * @param grid The costmap * @param index The index of the cell * @param mx The x coordinate of the cell (can be computed from the index, but saves time to store it) * @param my The y coordinate of the cell (can be computed from the index, but saves time to store it) * @param src_x The x index of the obstacle point inflation started at * @param src_y The y index of the obstacle point inflation started at */ inline void InflationLayer::enqueue(unsigned int index, unsigned int mx, unsigned int my, unsigned int src_x, unsigned int src_y) { if (!seen_[index]) { // we compute our distance table one cell further than the inflation radius dictates so we can make the check below double distance = distanceLookup(mx, my, src_x, src_y); // we only want to put the cell in the list if it is within the inflation radius of the obstacle point if (distance > cell_inflation_radius_) return; // push the cell data onto the inflation list and mark inflation_cells_[distance].push_back(CellData(index, mx, my, src_x, src_y)); } } void InflationLayer::computeCaches() { if (cell_inflation_radius_ == 0) return; // based on the inflation radius... compute distance and cost caches if (cell_inflation_radius_ != cached_cell_inflation_radius_) { deleteKernels(); cached_costs_ = new unsigned char*[cell_inflation_radius_ + 2]; cached_distances_ = new double*[cell_inflation_radius_ + 2]; for (unsigned int i = 0; i <= cell_inflation_radius_ + 1; ++i) { cached_costs_[i] = new unsigned char[cell_inflation_radius_ + 2]; cached_distances_[i] = new double[cell_inflation_radius_ + 2]; for (unsigned int j = 0; j <= cell_inflation_radius_ + 1; ++j) { cached_distances_[i][j] = hypot(i, j); } } cached_cell_inflation_radius_ = cell_inflation_radius_; } for (unsigned int i = 0; i <= cell_inflation_radius_ + 1; ++i) { for (unsigned int j = 0; j <= cell_inflation_radius_ + 1; ++j) { cached_costs_[i][j] = computeCost(cached_distances_[i][j]); } } } void InflationLayer::deleteKernels() { if (cached_distances_ != NULL) { for (unsigned int i = 0; i <= cached_cell_inflation_radius_ + 1; ++i) { if (cached_distances_[i]) delete[] cached_distances_[i]; } if (cached_distances_) delete[] cached_distances_; cached_distances_ = NULL; } if (cached_costs_ != NULL) { for (unsigned int i = 0; i <= cached_cell_inflation_radius_ + 1; ++i) { if (cached_costs_[i]) delete[] cached_costs_[i]; } delete[] cached_costs_; cached_costs_ = NULL; } } void InflationLayer::setInflationParameters(double inflation_radius, double cost_scaling_factor) { if (weight_ != cost_scaling_factor || inflation_radius_ != inflation_radius) { // Lock here so that reconfiguring the inflation radius doesn't cause segfaults // when accessing the cached arrays boost::unique_lock < boost::recursive_mutex > lock(*inflation_access_); inflation_radius_ = inflation_radius; cell_inflation_radius_ = cellDistance(inflation_radius_); weight_ = cost_scaling_factor; need_reinflation_ = true; computeCaches(); } } // Export factory function static PluginCostmapLayerPtr create_inflation_plugin() { return std::make_shared(); } // Alias cho Boost.DLL (nếu muốn dùng boost::dll::import_alias) BOOST_DLL_ALIAS(create_inflation_plugin, create_plugin) } // namespace costmap_2d